
  

AFRL-IF-RS-TR-2004-306 
Interim Report 
October 2004 
 
 
 
 
 
 
AGENTS OVERCOMING RESOURCE INDEPEND-
ENT SCALING THREATS (AORIST)  
  
Altarum 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. K275 
  
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be in-
terpreted as necessarily representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 

 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, includ-
ing foreign nations. 
 
 
 AFRL-IF-RS-TR-2004-306 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:              /s/ 
 

RICHARD A. HYLE 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:                /s/ 
 

JAMES A. COLLINS, Acting Chief 
Information Technology Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
October 2004

3. REPORT TYPE AND DATES COVERED 
Interim  Jun 00 – Jul 02 

4. TITLE AND SUBTITLE 
AGENTS OVERCOMING RESOURCE INDEPENDENT SCALING THREATS 
(AORIST) 
 

6. AUTHOR(S) 
H. Van Dyke Parunak, Sven Brueckner, 
John A. Sauter, and Robert Savit 
 

5.  FUNDING NUMBERS 
C     - F30602-00-C-0134 
PE   - 62301E  
PR   - ANTS 
TA   - 00   
WU  - 01  
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Altarum 
PO Box 134001 
Ann Arbor Michigan 48113-4001 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFTB 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                             Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2004-306 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Richard A. Hyle/IFTB/(315) 330-4857/ Richard.Hyle@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
     This project uses abstract simulation models of resource allocation and mathematical techniques inspired by statisti-
cal physics to study the nonlinear emergent dynamics of distributed decentralized resource allocation. Our techniques 
seek to characterize the dynamics that may be anticipated in real systems, to predict pathological dynamics such as 
peaks in required computational effort and catastrophic breakdown in performance, and to develop control methods 
based on this understanding.  
     Our general approach begins with a set of abstract Resource Allocation Games (RAG). These games are derived 
from the Minority Game, a simple model of competition for scarce re-sources that captures essential features of interac-
tions among agents that are heterogeneous, autonomous, boundedly rational, adaptable, parallel, co-situated, and ex-
perienced. Our research explores and generally confirms two hypotheses concerning the dynamics of resource alloca-
tion.  
• The Generality Hypothesis asserts that a generic RAG exhibits dynamics that are intrinsic to resource  
             allocation, in-dependent of mechanism.  
• The Specificity Hypothesis asserts that a RAG can be developed to resemble a specific re-source allocation 
             mechanism and study its (idiosyncratic) dynamics. 
Final report for this effort published as AFRL-IF-RS-TR-2004-280,  October 2004. 

15. NUMBER OF PAGES
74

14. SUBJECT TERMS  
Fine-Grained Agents, Dynamics, Negotiation, Stigmergy, Pheromones, Statistical Physics, 
Minority Game 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



   

  i

 

Table of Contents 

1 Summary ................................................................................................................................. 1 

2 Background............................................................................................................................. 2 

2.1 General Approach ........................................................................................................... 2 

2.2 Minority Game................................................................................................................ 3 

2.3 Metrics ............................................................................................................................ 8 

2.3.1 Utility Metrics......................................................................................................... 8 

2.3.2 Load Metrics ........................................................................................................... 9 

2.3.3 Input Entropy (Memory Entropy)........................................................................... 9 

2.3.4 Output Entropy (System State Entropy) ............................................................... 10 

2.4 Overview of Specific Configurations ........................................................................... 10 

3 Minority Game Core ............................................................................................................. 10 

3.1 RAG .............................................................................................................................. 11 

3.2 Mini-RAG..................................................................................................................... 11 

3.2.1 Simplified Structure .............................................................................................. 11 

3.2.2 General Phenomenology....................................................................................... 12 

3.2.3 Mini-RAG Phase Dependency.............................................................................. 14 

3.3 Adaptive Mini-RAG ..................................................................................................... 19 

3.3.1 N-Learning............................................................................................................ 19 

3.3.2 C-Learning ............................................................................................................ 22 

3.3.3 S-Learning............................................................................................................. 23 

3.4 Entropy Analysis........................................................................................................... 24 

4 Logistics Tracks .................................................................................................................... 24 

4.1 MICANT-RAG............................................................................................................. 24 

4.2 SNAP ............................................................................................................................ 26 

4.2.1 Problem Structure ................................................................................................. 26 

4.2.2 Experiments with the ISI Code ............................................................................. 26 

4.2.3 ISI-RAG................................................................................................................ 27 

4.3 Marbles ......................................................................................................................... 29 

4.3.1 Problem Structure ................................................................................................. 29 

4.3.2 Difficulty Metrics.................................................................................................. 30 



   

  ii

4.3.3 Marbles RAG........................................................................................................ 33 

4.3.4 Is MarbleSize Necessary....................................................................................... 34 

4.3.5 Is MarbleSize Sufficient?...................................................................................... 35 

5 ECM Tracks .......................................................................................................................... 39 

5.1 University of Kansas Track .......................................................................................... 39 

5.2 Kestrel ........................................................................................................................... 40 

5.2.1 Algorithm.............................................................................................................. 40 

5.2.2 Metrics .................................................................................................................. 42 

5.2.3 Phase Transitions .................................................................................................. 43 

5.2.4 Dynamic Attractors............................................................................................... 48 

5.2.5 Parallel with MG................................................................................................... 49 

5.2.6 Control Mechanisms ............................................................................................. 51 

6 Technical Leave-Behinds...................................................................................................... 53 

6.1 Technical Insights ......................................................................................................... 53 

6.2 Tools ............................................................................................................................. 54 

7 Transition Efforts .................................................................................................................. 56 

7.1 Bradley Upgrade ........................................................................................................... 56 

7.2 Supply Network Engineering........................................................................................ 57 

7.3 Collaboration with ISI/CAMERA ................................................................................ 58 

Acronyms...................................................................................................................................... 58 

References..................................................................................................................................... 59 

Appendix A: Theoretical Analysis of MICANT-RAG (Section 4.1) ........................................... 62 

Appendix B: Computation of entropy for the random choice game............................................. 64 
 



   

  iii

List of Figures 

Figure 1: General Architecture of Resource Allocation ................................................................. 2 

Figure 2: σ
2
/N as a function of z≡2

m
/N.—System productivity is maximal (and σ

2
/N minimal) at 

a critical value of the size of the agents’ strategy space. ........................................................ 6 

Figure 3: Domain-Level Metrics .................................................................................................... 8 

Figure 4: Measures of Utility to the Consumer Agent.................................................................... 9 

Figure 5: Measures of Load on the Supplier Agent........................................................................ 9 

Figure 6: AORIST Project Roadmap.—Ovals are existing simulation code; rectangles are 
simulation code by AORIST team; rounded rectangles are AORIST code that embodies 
control techniques, and lozenges are AORIST code that embodies deadline-sensitive 
techniques. ............................................................................................................................ 10 

Figure 7: Structure of the general Resource Allocation Game ..................................................... 11 

Figure 8: Mini-RAG Results – Mean Award Rate, two suppliers, varying strategy lengths ....... 12 

Figure 9: Mini-RAG Results - Std Dev of Group Size, two suppliers, varying strategy lengths . 12 

Figure 10: 3-supplier game ........................................................................................................... 13 

Figure 11: Entropy-Based Normalization of 3-Supplier Game .................................................... 13 

Figure 12: Standard Deviation of Group Size for Binary (upper curve) and varieties of Partial 
(lower curves) Rewards ........................................................................................................ 13 

Figure 13: Mean Award Rate as Function of Load....................................................................... 14 

Figure 14: Standard Deviation of Award Rate as Function of Load ............................................ 14 

Figure 15: Phase Transition in 3-SAT .......................................................................................... 15 

Figure 16: Phase Shift when Load ~ Capacity.—Overall system performance drops dramatically 
around N = C. Each point is the average of 13 runs of 10k turns; m = 6.............................. 16 

Figure 17: Mean load variance detail.—This plot shows each of the 13 runs at each N ∈ 
{201,210} for C = 200, m = 6. At N = 205 and N = 206, instances of the system are 
distributed across two distinct states, comparable to the coexistence of two physical phases 
(e.g., ice and water)............................................................................................................... 16 

Figure 18: Computational effort.—The number of different states over m=6 turns that agents 
must consider peaks near the transition region (N = 205, 206). Inset: Plot from N<<C to 
N>>C for C=120. .................................................................................................................. 17 

Figure 19: Overlap Region in the Mini-RAG Model.................................................................... 18 

Figure 20: Comparison of system state entropy.—Top is actual Mini-RAG result (G = 4, C = 
100), center is random baseline per Appendix B, and bottom is Experiment - Baseline. 
Experimental result is everywhere lower than baseline........................................................ 24 



   

  iv

Figure 21: Agents in the MICANT-RAG.—Accomplishment of a maintenance task requires 
coordination among the aircraft being maintained, a maintenance manager, and one or more 
resources (e.g., parts, workshop space, mechanics), each brokered by a supplier. .............. 25 

Figure 22 Oscillations in number of tasks waiting ....................................................................... 25 

Figure 23: Performance and Effort in CAMERA Baseline.—Both performance and 
computational load increase as constraints decrease. .......................................................... 27 

Figure 24: ISI-RAG Mean Award Rate (L=15, K=25, N={25,75}, G={25,75}, S=2) ................ 28 

Figure 25: The Basic Structure of a Marbles Problem (from [5]) ................................................ 29 

Figure 26: Sample Marbles Problems........................................................................................... 30 

Figure 27: Iterative Structure Extension ....................................................................................... 32 

Figure 28: Stupid Solvers on Small (left) and Medium (right) problems..................................... 35 

Figure 29: Impact of Pheromone Learning on MarbleSize Algorithm......................................... 37 

Figure 30: Impact of Deadline Mechanism on MarbleSize Algorithm ........................................ 38 

Figure 31: Performance and Effort in Case-Based Negotiation.—Number of messages increases, 
and success de-creases, as MaxCPUGiveUp parameter increases........................................ 39 

Figure 32: Phase Shift and Attractors ........................................................................................... 49 

Figure 33: Coloring Patterns in Different Attractors.—Node size is proportional to DOC. ........ 49 

Figure 34: Time To Solution as function of Activation Level...................................................... 50 

Figure 35: Comparison of ColorRAG and MG ............................................................................ 50 

Figure 36: Control Mechanisms.—The upper row of figures shows the improvement in G*DOC 
(higher is better) under each control mechanism. The lower row shows the change in TTS 
(lower is better). .................................................................................................................... 51 

Figure 37: Deadline Control in the ColorRAG.—Application of deadline control allows the 
system to reach a degree of conflict as low as the best results achieved with perfect 
knowledge (CL = 0). ............................................................................................................. 52 

Figure 38: Result of APSE run.—The large points clustered around the dotted line represent 
parameter configurations of interest. A complete sweep of the parameter space would have 
required 121810 simulation runs. APSE found the critical region with only 20046 runs, a 
savings of more than 6x. ....................................................................................................... 54 

Figure 39: AISLE Framework.—Researchers (A) instantiate templates (B) to guide simulation 
(C), analysis (D), and result presentation (E), generating standardized HTML reports that 
are integrated with other research documents in an integrated online experimental notebook. 
Reports include links to the templates (B), ensuring repeatability. The simulations can 
bedistributed over different processors in a processor farm. ................................................ 55 

Figure 40: Migration Paths among Versions of the Bradley Fighting Vehicle ............................ 56 

Figure 41: Conflicting Demands in Managing the Bradley.......................................................... 56 



   

  v

List of Tables 

Table 1: Independent Variables for Resource Allocation Games................................................... 3 

Table 2: An m=3 Strategy............................................................................................................... 4 

Table 3: Information in the Minority Game.—The minority game exhibits four classes of 
information. Important distinctions concern the source (columns) and location (rows) of 
information.............................................................................................................................. 5 

Table 4: Mapping ANT Domain Projects onto the RAG ............................................................. 11 

Table 5: Extending MG toward the RAG..................................................................................... 11 

Table 6: Versions of the N-Learning Rule.................................................................................... 19 

Table 7: N-Learning Experiments (m=8, G=2, C=30, NBE=0.9)................................................. 20 

Table 8: Tilted Consumer Preferences Experiment (m=8, N=61, G=2, C=60, Mean over 13 
experiments).......................................................................................................................... 22 

Table 9: Entities and Parameters for the ISI-RAG ....................................................................... 27 

Table 10: Parameters for Test Problems....................................................................................... 34 

Table 11: Enhancements of MarbleSize ....................................................................................... 36 

Table 12: Graph Construction Algorithms. .................................................................................. 40 

Table 13: Color Change Algorithms............................................................................................. 41 

Table 14: Correspondences between Mini-RAG and ColorRAG................................................. 42 

Table 15: Central Configuration ................................................................................................... 42 

Table 16: Parameter Sweeps for Studying Phase Transitions ...................................................... 43 



   

  1

1 Summary 
The AORIST project under the DARPA IXO Autonomous Negotiating Teams (ANT) program 
uses abstract simulation models of resource allocation and mathematical techniques inspired by 
statistical physics to study the nonlinear emergent dynamics of distributed decentralized resource 
allocation. Our techniques seek to characterize the dynamics that may be anticipated in real sys-
tems, to predict pathological dynamics such as peaks in required computational effort and catas-
trophic breakdown in performance, and to develop control methods based on this understanding.  

Our general approach begins with a set of abstract Resource Allocation Games, or RAG’s. These 
games are derived from the Minority Game (MG), a simple model of competition for scarce re-
sources that captures essential features of interactions among agents that are heterogeneous, 
autonomous, boundedly rational, adaptable, parallel, co-situated, and experienced. Our research 
explores and generally confirms two hypotheses concerning the dynamics of resource allocation.  

• The Generality Hypothesis asserts that a generic RAG exhibits dynamics that are intrinsic to 
resource allocation, independent of mechanism.  

• The Specificity Hypothesis asserts that a RAG can be developed to resemble a specific re-
source allocation mechanism and study its (idiosyncratic) dynamics.  

To explore the Generality Hypothesis, we experimented with a generalization of the MG called 
the “Mini-RAG.” This work identified 

• persistence of the basic MG phenomenology as specific constraints on that model are re-
laxed; 

• a rich phase structure in the parameter space generated by varying load and capacity; 

• the usefulness of system entropy as a metric; 

• effort profiles as a function of system size that behave differently than the research commu-
nity had predicted; 

• a variety of control mechanisms inspired by insect pheromones. 

To explore the Specificity Hypothesis, we developed versions of the RAG to study systems de-
veloped by other ANT program members in both applications domains, Electronic Countermea-
sures (ECM) and logistics. During the course of the project, we worked with the MICANT team 
at Vanderbilt, the CAMERA team at ISI, the Case-Based Reflective Negotiation Model 
(CBRNM) team at Kansas, and the Kestrel team. In both domains our tools and methods were 
able to  

• identify important dynamical behaviors,  

• provide improved control; and 

• manage system behavior in the presence of an approaching deadline. 

AORIST leaves behind a number of important technical insights and tools that have immediate 
deployment opportunities in critical defense programs. Key technical insights include 

• the ubiquity of dynamical phenomena with potential performance implications, including 
phase shifts and multiple attractors; 
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• the dependence of computational effort profiles on algorithmic details; 

• the power of pheromone learning as a control mechanism; 

• the importance of balancing exploration against exploitation as deadlines near. 

The AORIST toolkit includes the Adaptive Parameter Search Environment (APSE) for finding 
regions in parameter space where dynamic irregularities occur, and Automated Instance Sweep 
for Local Exploration (AISLE) to study those regions in detail.  

We are actively pursuing transition of these tools and techniques in three areas. 

• We are developing an interactive analysis tool in support of PM Bradley to support decisions 
and fielding plans for the remanufacture and deployment of various versions of the Army’s 
Bradley Fighting Vehicle. This tool will serve as a platform for successive enhancements 
based on AORIST technology. 

• We are active in two DoD-funded consortia dealing with supply network dynamics, ONR’s 
Supply-chain Practices for Agile Naval Systems (SPANS) and DLA’s Defense Sustainment 
Consortium (DSC). In these projects AORIST techniques will enable defense prime contrac-
tors (at present, NorthrupGrumman Newport News and Raytheon, respectively) to improve 
their performance and reduce costs by managing the dynamics of resource allocation more 
effectively. AORIST’s AISLE tool is already supporting SPANS. 

• We are working with ISI to transition some of our enhancements to their algorithms into the 
deployment channels that they have developed. 

2 Background 
This section outlines our general approach and architecture, describes the metrics we have devel-
oped, and provides an overview of the various configura-
tions we have studied.  

2.1 General Approach 
The complexities of a real-world system can make it diffi-
cult to find and analyze interesting and important dynam-
ics. We begin with an abstract system that is known to ex-
hibit interesting dynamics, and then expand it in the direc-
tion of various application systems. 

Our starting point is the “minority game,” described in de-
tail in the next subsection. Figure 1 and Table 1 show the 
general structure of this game. A set of consumer agents 
seek resources from a set of supplier agents. By their 
choices, they change the load conditions of the various 
suppliers, thereby impacting the success of their requests 
for support. 

In spite of its simplicity, this model captures the essence 
of many more complex resource allocation problems, es-
pecially when we generalize it to a Resource Allocation 

CAg1

CAg2

CAgN

Environment
SAg1SAg2

SAgm

CAg1

CAg2

CAgN

CAg1

CAg2

CAgN

Environment
SAg1SAg2

SAgm

 

Figure 1: General Architecture of 
Resource Allocation 
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Game or RAG (Section 3.2). The 
agents in this model have a number 
of characteristics in common with 
those in more realistic systems. 
They are  

• Autonomous, making decisions 
locally based on locally avail-
able information; 

• Heterogeneous, differing in 
their decision-making criteria; 

• Boundedly rational, with strict limits on the reasoning they can perform; 

• Adaptable, capable of multiple different behaviors in response to different environmental 
stimuli; 

• Parallel, making decisions without waiting to know the decisions of others; 

• Co-situated, sharing a common environment that they influence by their actions; 

• Experienced, changing their behavior over time in response to their experience. 

Our research explores two hypotheses concerning the dynamics of resource allocation.  

• The Generality Hypothesis asserts that a generic RAG exhibits dynamics that are intrinsic to 
resource allocation, independent of mechanism. Testing this hypothesis involves studying 
(extensions of) the Minority Game and comparing their behavior with that of domain sys-
tems. 

• The Specificity Hypothesis asserts that a RAG can be developed to resemble a specific re-
source allocation mechanism and study its (idiosyncratic) dynamics. Testing this hypothesis 
requires developing specific extensions modeled on a particular application. 

2.2 Minority Game 
AORIST is inspired by a particular dynamic effect first observed in the Minority Game (MG), an 
abstract model of resource allocation. This model has been extensively discussed in the literature 
of statistical physics [6, 7, 8, 9, 14], and one Co-PI (Savit) is a recognized leader in the study of 
its dynamic behavior [17, 18, 19, 27, 28]. The model demonstrates the potential of our technical 
approach to relate inter-agent and intra-agent behavior and information in support of system 
characterization, prediction, and control.  

The Model.—Consider an odd number, N, of agents (representing tasks) and two resources la-
beled 0 and 1. In terms of the ANT electronic counter-measures domain, an agent might be an 
ANT representing an incoming target, and the resources might be weapon platforms available to 
meet those threats. At each time step, each target agent chooses one of the weapon platforms. A 
platform is overloaded and unable to function if chosen by more than half of the agents. So each 
target assigned to the less-used platform at a time step receives a point, while each target on the 
overloaded platform gets nothing. Because agents prefer to be in the minority group, we call this 
model the “minority game.” The best system-wide outcome is a balanced resource load, where 
the majority and minority populations differ by only one. 

Table 1: Independent Variables for Resource Alloca-
tion Games 

Parameter Meaning 
G # of Supplier Agents (SAg’s) 
C Total capacity of SAg’s, = i * G for in-

teger i 
N # of Consumer Agents (CAg’s) 
<s> Vector of strategy parameters used by 

Cag’s (defined in more detail below) 
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In the dynamic decentralized scenarios envisioned by ANT, centralized a priori allocation 
schemes are of little use, and agents allocate resources among themselves in real time, based on 
information about the current and past utilization of those resources. In the previous section, we 
described this information as “inter-agent endogenous,” “inter-agent” because it is characteristic 
of the system rather than any single agent, and “endogenous” because it is generated by the 
agents’ interactions rather than imposed externally. This feedback, in which agents make deci-
sions based on a world state affected by their decisions, is a ubiquitous feature of ANT-type re-
source allocation.  

In our simple model, this shared information takes the form of a time series G of minority re-
source identifiers. That is, for any time step t, G(t) is 1 if resource 1 was less heavily loaded at t, 
and 0 if resource 0 was less heavily loaded. For example, if the minority resource alternates over 
the first ten rounds of the game, G would have the form ‘0101010101’, where new rounds are re-
corded at the right. 

The exogenous intra-agent information consists of a set of strategies as-
signed to each agent by the programmer. Each strategy tells its agent which 

resource to choose, depending on the most recent entries in the history G. 
A strategy of memory m is a table of 2m rows and 2 columns. The left col-
umn contains all 2m combinations of m 0's and 1's, and each entry in the 
right column is a 0 or a 1. To use a strategy of memory m, an agent ob-
serves which were the minority resources during the last m time steps of 
the game and finds that entry in the left column of the strategy. The corre-
sponding entry in the right column contains that strategy's prediction of 
which resource (0 or 1) will be the minority during the current time step, 
and thus its recommendation of the agent’s action. Table 2 shows an ex-
ample of an m=3 strategy. To apply this strategy to the example ten-step 
history outlined earlier, the agent extracts the last three digits of the his-
tory (‘101’), finds that string in the sixth row of the strategy, and chooses action 1. The variable 
m reflects one dimension of the intelligence or sophistication of the agent. 

At the beginning of the game each agent is randomly assigned s (generally greater than one) of 
the 22m possible strategies of memory m, with replacement. Thus the dimension of the strategy 
space occupied by agents with memory m is D = 2m. An agent learns a cumulative performance 
rating for each of its strategies. This rating is an example of intra-agent endogenous information 
(private to the agent, maintained by the agent’s own processing). Following each round of deci-
sions, the agent updates the rating for each of its strategies by comparing that strategy's latest 
prediction with the current minority group. Then, in choosing its next move, it uses the strategy 
with the highest performance rating. The agents can choose to play different strategies at differ-
ent moments of the game in response to changes in their environment; that is, in response to new 
entries in the time series of minority groups as the game proceeds. For MG, the vector of strategy 
parameters referenced in Table 1 includes s and m. 

The agents use the time series G of past allocations in two different decisions. First, at each time 
step, each agent updates its estimate of the performance of each of its strategies on the basis of 
the most recent entry in G (the outcome of the previous step). Thus G guides it in selecting 
which strategy to employ. Second, within that strategy, it selects its next move based on the most 
recent m entries in G. Interestingly, these functions can be decoupled. Actual performance feed-

Table 2: An m=3 
Strategy 

m-
string 

Action 

000 0 
001 1 
010 1 
011 0 
100 0 
101 1 
110 0 
111 1 
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back (inter-agent endogenous information) is necessary in learning the value of different strate-
gies. However, the signal used within a strategy to pick an action can be replaced by a (publicly 
visible) random variable (thus, inter-agent exogenous information) without greatly changing the 
system’s performance [6]. The primary purpose of this signal is to coordinate actions over the 
agents, not to convey information about past successes. Distinguishing these two functions is 
important in mapping real ANT applications onto our model. 

This simple model is similar at many points to ANT systems: 

• It reflects four categories of information important in understanding ANT dynamics (Table 
3). 

• Its agents correspond to ANT agents that are seeking resources. 

• They are rewarded in a way that reflects the value of constrained resources. 

• The agents shape the same environment that in turn guides their decisions. 

• They interact through iterated public actions, a form of negotiation. 

Characterizing System Dynamics.—The total number of points awarded to the agents reflects 
the overall productivity of the system, since each point represents a task assigned to a resource 
that is not overloaded. (In ANT, the more points the system accumulates, the more threats it suc-
ceeds in shooting down.) Using methods inspired by statistical physics, we have discovered that 
this productivity varies with the amount or degree of detail of information used to coordinate the 
resource choices among the agents (reflected in the dimension of the strategy space). An indirect 
measure of this productivity leads to a universal form of the dependency.  

Consider the time series of the number of agents assigned to resource 1. Because the game is 
symmetric, the mean of this time series will be close to 50% of the agents. The number of points 
awarded in a given step is bounded by this mean, since only agents on the minority resource are 
rewarded. If the variance σ2 of the time series is small, most minorities will be close to half of 
the agents, and more points will be awarded over time than if σ2 is large. So this variance (or 
equivalently, the variance of the time series of the number of points generated in each time step) 
will be inversely correlated with system productivity. 

The number of agents N turns out to be an important normalization factor. Figure 2 plots σ2/N as 
a function of z≡2m/N on a log-log scale for various N and m. Thus scaled, the data fall on a curve 
that is universal in N. The horizontal dashed line reflects the value that σ2/N would take if the 
agents assigned themselves randomly and with equal probability at each step. Let mc be the value 

Table 3: Information in the Minority Game.—The minority game exhibits four classes of in-
formation. Important distinctions concern the source (columns) and location (rows) of informa-
tion.  

 Exogenous (imposed externally) Endogenous (generated by the agents) 
Intra-agent 
(within agents) 

Strategy space parameter m 
Each agent’s strategies 

Historical payoff from each strategy 
Evolved strategies 

Inter-agent (be-
tween agents) 

Can be used to key strategies [6]2] History G of levels of resource utiliza-
tion 
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of m at which σ has its mini-
mum. Then, the minimum of this 
curve is near 2mc/N≡zc≅0.34, and 
separates two different phases.  

For z<zc (reflecting low values 
of m and thus small strategy 
spaces), the system is in a phase 
in which system productivity is 
poor. In this phase agents exhibit 
a kind of herding behavior. 
About half the time a large pro-
portion of the agents move to the 
same resource. Thus on average 
the agents do worse than they 
would even by choosing ran-
domly. As m increases to the 
critical point mc, overall produc-
tivity increases. This part of the 
curve is not surprising, since one 
might expect that a larger strat-
egy space (measuring one di-
mension of increased agent sophistication) ought to lead to improved performance. 

We are surprised, though, to find that as z increases beyond zc, productivity falls off until it ap-
proaches that achieved by agents making random choices. That is, the emergent coordination and 
resulting productivity decrease as agent sophistication increases. System performance is greatest 
when the dimension of the strategy space from which the agents draw their strategies is on the 
order of the number of agents playing the game. 

Because the critical point is dependent on N, the danger of lowered performance away from the 
critical point is a scaling threat. Traditional scaling threats (due to NP-hard computational com-
plexity) result from the combinatorial explosion of demand on processing and communication 
resources by a growing agent population. The scaling threat in the minority game is resource-
independent, and can appear whether the agent population shrinks or grows from its designed 
level. Thus our simple model exhibits a Resource-Independent Scaling Threat (RIST). In practi-
cal terms, if this dynamic is not taken into account, an ANT prototype that performs acceptably 
on a test problem may underperform when it is fielded on a larger or smaller scale. 

Around zc the agents are able to coordinate their choices to achieve a good utilization of re-
sources. By basing their individual decisions on information that they collectively generate, the 
agents achieve a high level of coordination. This information develops over successive iterations 
of the system, and it is a form of indirect negotiation among the agents. Thus the performance 
peak at zc supports the general thesis of ANT that negotiation can yield coordination. It is impor-
tant to recognize, though, that this negotiation is happening whatever the values of m and N (and 
thus z). That is, negotiation alone is not enough to ensure good performance. Even with negotia-
tion, dynamic behaviors such as RIST can compromise system performance if they are not rec-
ognized and controlled. 

 

Figure 2: σ
2
/N as a function of z≡2

m
/N.—System productiv-

ity is maximal (and σ
2
/N minimal) at a critical value of the 

size of the agents’ strategy space. 
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In terms of analogies from statistical physics, the system undergoes a phase transition at zc. For-
mally, the existence of such a phase transition in a computational system is comparable to the 
phase transitions observed in (for example) the actual computational complexity of K-SAT [22]. 
Operationally, the two transitions have very different implications. Phase transitions that arise 
combinatorially (such as those in K-SAT) mark regions in which computational costs explode. 
Well below the transition, most problems can be solved quickly. Well above the transition, most 
problems can quickly be proven unsolvable. Around the transition, one must expend large 
amounts of resources before either finding a solution or learning that one does not exist. Thus the 
phase transition should be avoided in designing and operating a practical system. In contrast, our 
phase transition marks a “sweet spot” in which system productivity is maximized, and is a target 
AORIST will enable the system to identify and attain. 

Generating and Using Inter-Agent Endogenous Information.—The agents both generate the 
time series G and use it in making their decisions. Our methods (detailed in [19]) permit us to 
compare the amount of information that they build into G with the amount that they can use. This 
notion of “amount of information” draws directly on the analogy of entropy in statistical physics, 
and is based on the entropy of substrings of G of various lengths. What we discover confirms the 
importance of the phase transition, and suggests mechanisms for monitoring ANT systems as 
they operate. 

Below mc, we find that G contains no information in substrings of length equal to or shorter than 
the memory m used by the agents. Thus, any agent using strategies with memory (less than or) 
equal to m will find that the portion of the history that it can see contains no predictive informa-
tion about which group will be the minority at the next time step. The strategies have effectively 
used all of the information visible to them. Therefore, in this sense, the system is efficient (at 
least with respect to the strategies). We call this phase informationally efficient with respect to 
the strategies. 

Remarkably, G does contain information in substrings longer than m. This information is gener-
ated by the agents’ decisions, but is invisible to them. Recognizing the existence of such excess 
information, we can in principle leverage it for system-level characterization and prediction. 

If we repeat the analysis above mc, we find that G contains significant information even in sub-
strings the same length as m. In this phase, the strategies are not able to make use of all the in-
formation that they can see, and the system is more information inefficient with respect to the 
strategies. The more m exceeds mc, the more information is left in G. Again, we may expect this 
variation to have considerable impact on the reliability of agent negotiation mechanisms based 
on microeconomic theory. 

The difference between the information efficient and information inefficient phases is seen in the 
level of success achieved by individual agents. In the high-m phase, some agents accumulate sig-
nificantly more points than they would by simply making random guesses, while others are im-
poverished. (In the electronic counter-measures domain, some targets recruit more than enough 
resources, while others are ignored.) However, in the low-m phase, no agent ever achieves more 
than 50% of the possible available points.  

We have already noted that performance is not monotonic in the size of the strategy space or 
agent population, but that moderate populations of moderately sophisticated agents outperform 
very small or very large populations of very smart or very dumb agents. In addition, the best co-
ordination among agents is obtained when the agents possess only moderate degrees of adaptiv-
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ity, measured by the number of strategies available to each agent. When each agent has only one 
strategy, the phase transition disappears, and the game becomes trivial and periodic. As the num-
ber of strategies available to each agent increases beyond two, coordination becomes more diffi-
cult. The general phase structure still obtains, but the degree of coordination diminishes and the 
system generally performs more poorly at the transition and in the inefficient phase than it does 
when each agent has fewer strategies (but still more than one). Thus, in respect both to size of 
strategy space and to adaptivity, modern research into the minority game exemplifies the exhor-
tation of Horace more than two millennia ago to  

hold fast the golden mean, 
and live contentedly between 
the little and the great.1 

2.3 Metrics 
Experimentation requires well-defined dependent variables. The metrics we have been exploring 
fall into four categories: 

1. Measures of the Utility experienced by the Consumers over the course of the game; 

2. Measures of the Load experience by the Suppliers over the course of the game; 

3. The entropy of the input information stream available to the Consumers in making their allo-
cation decisions; 

4. The entropy of the configurations of Consumers across Suppliers resulting from their alloca-
tion decisions.  

Figure 3 illustrates an important characteristic of our metrics. For the most part, they concern 
characteristics that are observable at the level of the problem domain (e.g., load levels, entropy 
of message traffic). Other approaches to studying the complexity of negotiation-based resource 
allocation (e.g., SAT-based analyses) are specific to a particular computational implementation, 
and thus more difficult to generalize. 

2.3.1 Utility Metrics 
A CAg gets a point at each turn depending on the population and capacity of the SAg it selects. 
The fundamental time series involved in computing utility metrics is Ui(t), the award to CAg i at 
time step t. Useful measures on this 
time series include the various 
sums, averages, and measures of 
variance summarized in Figure 4. 

tUµ  is commonly studied and is 
called the “mean award rate.” 

Our experiments typically report the 
mean, over 13 replications with 
random seeds, of µU and σU. 

                                                 
1 Horace. Book ii. Ode x, Cowper’s Translation 

Allocator Action / 
Resources

Cmds; 
Status

Negotiation

SAT Solver

SAT phase 
transitions 
apply to 
underlying 
computational 
representation.

AORIST phase transitions apply 
to domain observables.

AllocatorAllocator Action / 
Resources

Action / 
Resources

Cmds; 
Status

Negotiation

SAT Solver

Negotiation

SAT Solver

SAT phase 
transitions 
apply to 
underlying 
computational 
representation.

AORIST phase transitions apply 
to domain observables.
AORIST phase transitions apply 
to domain observables.  

Figure 3: Domain-Level Metrics 
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Some experiments use a modified 
version of this metric. At each 
turn, we record the number of 
tasks that have not received their 
resource. When tasks both arrive 
and complete asynchronously, 
computing the number of out-
standing tasks requires summing 
over the time steps that a task is 
active. Let N(t) be the number of 
tasks that are outstanding in time period t. U(t), as defined in Figure 4, already defines the num-
ber of tasks that complete in time period t. So the number of outstanding (or waiting) tasks at the 

end of any time period t is just ( ) ( ) ( )iUiNtW
t

i
−= ∑

=0
. 

Intuitively, high µU maximizes overall system return and increases the probability that an indi-
vidual CAg is happy. Low σU is associated with a more uniform distribution of utility across the 
population of CAg’s. 

2.3.2 Load Metrics 
The fundamental time series involved in computing load metrics is Lj(t), the number of CAg’s 
that select SAg j at time t. Useful measures on this time series include the various sums, aver-
ages, and measures of variance summarized in Figure 5. 

Our experiments typically report the mean, over 13 replications with random seeds, of σL, σ(σL), 
and the coefficient of variation (σL/(√(N/G))).Intuitively, high σL means suppliers need high ca-
pacity for peaks, but must pay for it during valleys, raising overhead costs. It introduces variabil-
ity that amplifies as one moves down the supply chain (as shown by our previous work on 
DASCh [25]), and reflects a complex decision landscape for CAg, generally requiring higher de-
cision costs.  

High σ(σL) reflects strong sensitivity of system performance on frozen-in strategies. 

2.3.3 Input Entropy (Memory Entropy) 
For a given m, CAg’s make their decisions based on strings of the history of length m. Count all 
distinct strings of length m in the history, and let pi be the probability that the ith string appears. 
The (Shannon) input entropy (memory entropy) is then Sin = - ∑ pi log(pi) . It is sometimes con-
venient to normalize Sin by the loga-
rithm of the number of distinct strings 
that occur, thus removing the de-
pendency on this number and on the 
base of logarithms. Intuitively, Sin 
measures the range of uncertainty in 
the environment in which the CAg’s 
have to act.  
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Figure 4: Measures of Utility to the Consumer Agent 
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Figure 5: Measures of Load on the Supplier Agent 
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2.3.4 Output Entropy (System State Entropy) 
For a given G, each step results in a vector of length G specifying the population of each SAg. 
Count all distinct vectors obtained over a run, and let p be the probability that the ith vector ap-
pears. The (Shannon) output entropy is then Sout = - ∑ pi log(pi) . Again, normalization is some-
times helpful. Intuitively, Sout measures how unpredictable the aggregate behavior of the CAg’s 
is. Thus we expect it to correspond closely to σL. It is relevant to measures of self-organization, 
and in the endogenous case, to how much the agent’s actions contributed to the uncertainty in 
their environment. 

2.4 Overview of Specific Configurations 
Figure 6 show our basic experimental structure. Extensions of the MG form the core of our pro-
ject, and are reviewed in Section 3. These domain-independent configurations permit us to ex-
plore dynamics in support of the Generality Hypothesis. Domain- and application-specific exten-
sions of the basic game support the Specificity Hypothesis, and are discussed in Sections 4 (for 
logistics systems) and 5 (for Electronic Counter-Measures (ECM) systems).  

The movement from top to bottom in Figure 6 includes at most four steps. 

1. We begin with existing code developed by domain teams (ovals). 

2. We develop a version of our RAG to support specific features of the domains system 
(rectangles). 

3. We then add control mechanisms based on the dynamics we observe (rounded rectan-
gles), 

4. and finally explore ways to handle the changing pressure of tasks deadlines (lozenges). 

The amount of effort invested in each 
track varied depending on the intrinsic in-
terest of early results and the perceived 
usefulness of our results to domain teams. 
Thus some paths do not go through all 
four steps. 

3 Minority Game Core 
The MG focuses on dynamics at the criti-
cal point where demand and capacity are 
precisely balanced. We generalized this 
game to form the RAG, then implemented 
a subset of the RAG (the Mini-RAG) and 
explored control mechanisms. 

MG

UKansas Marbles

MICANT 
RAG

MiniRAG

Adaptive
MiniRAG

Color 
RAG

Adaptive Color 
RAG

Adaptive 
Marbles

ISI 
RAG

Marbles 
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SNAPKestrel MICANT

ECM Teams Logistics TeamsAORIST

Deadline Color RAG Deadline Marbles
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RAG
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RAG
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Marbles
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RAG

Marbles 
RAG

SNAPKestrel MICANT

ECM Teams Logistics TeamsAORIST

Deadline Color RAG Deadline Marbles  

Figure 6: AORIST Project Roadmap.—Ovals are 
existing simulation code; rectangles are simulation 
code by AORIST team; rounded rectangles are AO-
RIST code that embodies control techniques, and 
lozenges are AORIST code that embodies deadline-
sensitive techniques. 
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3.1 RAG 
The general Resource Allocation Game 
(RAG) is a conceptual construct, not an 
implemented software system. Figure 7 
shows its general structure. 

• A task generator generates tasks 
over time with a specified temporal 
distribution. 

• Each task has a set of required re-
sources, a completion time, a pref-
erence over suppliers, and strategies 

for selecting suppliers. 

• Each supplier supports some 
set of tasks. It has an inven-
tory level, a response time 
and distribution, and a re-
plenishment time and distri-
bution that may depend on 
the task and in general is 
much greater than the re-
sponse time. 

Table 4 maps several of the ANT 
domain projects onto this abstract 
model.  

3.2 Mini-RAG 
The full RAG is too complex to be tractable for experimentation. We extended the MG in the di-
rection of the RAG to provide a domain-independent experimental environment.  

3.2.1 Simplified Structure 
Mini-RAG is an extension of the basic minority game that supports several features of the RAG 
that go beyond MG. Table 5 details these extensions. The following section highlights our obser-
vations under each of these extensions. 
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Completion time
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Figure 7: Structure of the general Resource Allo-
cation Game 

Table 4: Mapping ANT Domain Projects onto the RAG 
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Table 5: Extending MG toward the RAG 
Feature MG Mini-RAG 
Load N vs. Capacity C N = C+1 N and C vary independently 
Number of suppliers G Only two Any number of suppliers 
Award model Consumers on an underloaded sup-

plier get a full point; consumers on an 
overloaded supplier get nothing. 

Overloaded suppliers can provide par-
tial satisfaction to agents who choose 
them. 

 



   

  12

3.2.2 General Phenomenology 
Each of the extensions described in the previous section has interesting effects on the behavior of 
the system. 

Moving Away from N = C + 1.—The MG operates at N = C + 1. Figure 8 shows the mean 
award rate as the capacity (C) and the number of agents (N) vary. The slope near the saturation 
point (where MG lives) is sharpest for systems that use a history of 3, which is near the mini-
mum for of the Savit curve for this minority game. Both less and more history information 
stretch out the region where poor results are obtained.  

Figure 9 shows the standard deviation of the group size as C and N vary for each of the values of 
m shown in Figure 8. There are several interesting regions in this space. At the smoother far left 
and far right corners of the plot there is insufficient information to provide learning, and choices 
are effectively random. Within the region roughly bounded by CNN /)( +  and CNN 2/)( −  
learning occurs. Similar results were obtained when the number of suppliers is increased and 
when a partial award strategy is employed. A detailed report on the structure of the N vs. C space 
is available [26]. 

Exploring G > 2.—Most realistic resource allocation problems involve more than the two re-
sources represented in the (MG). We have studied the dynamics of systems with three and four 
suppliers. Figure 10 shows the results for three suppliers, scaled using the normalization factors 
common for MG (as used in Figure 2). The various lines visible in the plot represent different 
values of m. The plot shows the same general structure as Figure 2 (performance worse than ran-
dom at the left, asymptotic approach to random performance at the right, and better-than-random 
performance in between), but the data no longer fall on a curve that is universal in m. One might 
expect that the problem is due to the base 2 used in the factor 2m/N, since we have now moved 
from two to three suppliers, but a normalization based on 3m/N fares no better. 

m=1m=1 m=3m=3 m=8m=8

 

Figure 8: Mini-RAG Results – Mean Award Rate, two suppliers, varying strategy lengths 

 

Figure 9: Mini-RAG Results - Std Dev of Group Size, two suppliers, varying strategy 
lengths 

m=3 m=1 
m=8 
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An alternative normalization of the abcissa does 
restore the universal curve. For a given m, 
agents make their decisions based on strings of 
length m. Count all distinct strings of length m in 
the history, and let pi be the probability that the 
ith string appears. The (Shannon) input entropy 
(memory entropy) is then Sin = - ∑ pi log(pi) . 
Intuitively, Sin measures the range of uncertainty 
in the environment in which the agents act. 
Figure 11 shows that normalizing the abcissa by 
eS/N does restore the smooth curve. This nor-
malization works for the two-supplier case as 
well. The original 2m/N normalization for that 
case works because, in the limit in which the 
probability distribution of h is flat, the entropy of 
substrings of m-length is just log(2m), so that eS = 
2m. 

Variable payoffs.—In each cycle of the standard 
MG, each agent on the minority resource gains 
one point, while each agent on the overpopulated 
resource gets no points. Both of these conditions 
can be relaxed. Even the minority resource may become less effective as its population increases, 
leading to models with variable payoffs. In many resource allocation problems, an overloaded 
resource is not completely shut down, but can satisfy some of the agents that choose it, the par-
tial satisfaction scenario. 

In variable payoff games, the amount received by each agent on the minority resource depends 
on the population of the resource. We have explored two models for this variability. Let n be the 
population of the minority group, and let r=n/N. Then, we consider payoff functions of the form 
A(r) ~ r-α, and  A(r) ~ e-γr, where A(r) is the payoff to each member of a minority group with 
population n = rN. We have also explored payoff functions that depend on the difference in 
population between the majority and the minority group. 

To model partial satisfaction, in addition to giving a point to each agent on the minority resource, 
we also give an award to a randomly selected subset of the 
agents on the overloaded resource(s). The size of the sub-
set e is equal to the capacity of the resource. We have ex-
perimented with two different values for the amount of the 
reward. In one case, we give each agent in the rewarded 
subset a point, just as though that agent had selected a mi-
nority resource. In the other, we give each agent in the re-
warded subset a fraction of a point, equal to the ratio be-
tween the resource’s capacity and its population. We have 
also explored the effect of using fractional awards to rank 
strategies. Figure 12 shows that the basic structure of the 
game is invariant over these modifications. The upper 
curve results from the standard binary reward scheme, 

 

Figure 10: 3-supplier game 

 
Figure 11: Entropy-Based Normalization 
of 3-Supplier Game 
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while the three possible combinations of partial rewards (partial reward of strategies, consumers, 
or both) fall together in the lower curve. All curves have the same minimum at the phase transi-
tion. 

In all these cases, the basic dynamics of the game are unchanged. Performance is suboptimal 
when m is small, approaches the random payoff as m grows large, and is better-than-average in 
the intermediate region. 

3.2.3 Mini-RAG Phase Dependency 
The general shape of our metrics over the N vs. C space is strongly suggestive of phase transition 
signatures in K-SAT problems. To be specific, at m = 3 (near the phase transition for MG), we 
sweep C from 12 to 48 by steps of 2, and N from 
8 to 51 by steps of 1, and explore the landscape of 
various metrics over this range. Various metrics 
tend to fall into two categories. 

Figure 13 shows the mean award rate (the number 
of agents receiving a point in each turn) over this 
space. For N < C, the award rate approaches 1, in-
dicating that the agents are able to distribute 
themselves without overloading over the available 
resources. This result is in itself non-trivial, and 
indicates that the strategy mechanism has learned 
to avoid overload when the system is operating 
under capacity. As the load increases and N grows 
greater than the total system capacity, the award 
rate falls to zero. Around N = C, the award rate is about 50%, achieving a uniform allocation of 
resources. 

Figure 14 shows the standard deviation of the award rate over this same space. It peaks around N 
= 25, the configuration of the standard Minority Game. This plot shows that when the system is 
far from capacity in either direction, its behavior will be relatively stable and predictable. When 
it approaches the point where capacity and demand are closely balanced, system performance 
becomes more erratic. Other system metrics have landscapes that mirror one or the other of these 
two prototypes. 

It is instructive to compare Figure 13 and Figure 
14 with the lower and upper regions, respec-
tively, of Figure 15 (from [21]). This plot repre-
sents a phase transition in constraint satisfaction 
problems. For a given number of variables N and 
number of clauses L, an instance of random 3-
SAT is produced by randomly generating L 
clauses of length 3. Each clause is produced by 
randomly choosing a set of 3 variables from the 
set of N available, and negating each with prob-
ability 0.5. 
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Figure 13: Mean Award Rate as Function 
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Two metrics in this system are of interest: the 
number of calls to the atomic constraint resolu-
tion procedure needed to determine whether a 
given problem instance is or is not satisfiable 
(reflecting the computational complexity of the 
given problem instance), and the probability that 
such an instance is indeed satisfiable (estimated 
as the fraction of a population of randomly gen-
erated instances that are found to be satisfiable). 
Figure 15 plots these two metrics as a function 
of L/N.  

The lower plot shows that as the number of 
clauses increases for given N, the probability 
that the problem is satisfaction drops. This be-
havior is expected: as additional clauses are 
added, the likelihood increases that the problem 
will be over constrained.  

The upper plot shows that the computational ef-
fort needed to determine whether an instance is 
or is not able to be satisfied is reported as the 
median of 500 trials is low for instances with ei-
ther very few or very many clauses, and peaks around L/N = 4.3. 

The computational effort peaks at the point where the probability of satisfaction is 50%. If al-
most all instances are either able to be satisfied or not, it doesn’t take long to find either a solu-
tion or an irreconcilable pair of clauses. However, in the intermediate region, a much larger pro-
portion of the domain must be examined. 

The similarity between the two systems is important. Both cases distinguish a region in which 
solutions are abundant and easy from a region in which they are rare. In both cases, the transition 
between these two regions is marked by a peak in an undesirable system measure (variability in 
award rate in the Mini-RAG; calls to the solver in 3-SAT). The similarity suggests that this sig-
nature is not an artifact of the indirect negotiation used in the MG, but reflects a general property 
of any system that is close to its capacity. In particular, we expect that whatever negotiation 
mechanism is used to address a resource allocation problem, its behavior will degrade in some 
observable way in the region where load is about equal to capacity. The way in which this degra-
dation is manifested may depend on the mechanisms being used. In some systems, it may take 
the form of high variability in the results achieved. Other systems may achieve low variability, 
but at the expense of more protracted negotiations. The point is, a closely constrained environ-
ment has intrinsic dynamics, and the flow of information between the environment and the 
agents that interact with it will impose its dynamics on those agents, whatever the negotiation 
mechanisms being used. 

Importantly, pressures in real-world systems will tend to drive the system toward the region of 
high cost. The cost of resources tends to reduce C, while demand for system execution tends to 
increase N. Thus over time, many systems will find themselves along the dynamically complex 
region near the MG. 

 

Figure 15: Phase Transition in 3-SAT 
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The plots presented thus far are the 
mean of 13 experiments at each as-
signment of experimental parame-
ters, each experiment only varying 
by the initial random number seed. 
By plotting the results of each ex-
perimental run separately it be-
comes clear that the steep side 
slopes of the transition region actu-
ally represented to distinct phases of 
system behavior.  

Figure 16 represents the perform-
ance of the Mini-RAG as a function 
of the number of agents N request-
ing resources from suppliers that have a total capacity of C, and the variance in the supplier load. 
A lower variance results in better system performance (since the load is more evenly balanced 
and more agents are satisfied).  

In this discussion, we focus on the region near N = C, where σ2/N peaks. Figure 17 shows a slice 
at constant C = 200 through this peak. (We show only the flank on the side where N > C; a theo-
rem proven in [26] shows that this curve is symmetrical about N = C + 1). This figure plots the 
result of each run of the system separately, in contrast with Figure 16, which plots the average at 
each value of N and C. In the region corresponding to the flanks of the central peak in Figure 
16b, the values of σ2/N for different runs separate into two quite distinct groups. For a given C 
and a range of N, there is a well-defined coexistence region between two very distinct phases in 
these resource allocation games, comparable to the coexistence of different phases in a physical 
system. The values of σ2/N in Figure 16b at the top of the central peak and at the bottom of the 
neighboring valleys accurately reflect typical behavior of individual runs. But the average values 
along the flanks are atypical; any 
given individual run belongs either to 
the high or the low phase. This system 
thus exhibits not one but two phase 
changes, one on each flank of the sys-
tem. 

What is the distribution of computa-
tional effort as one moves through 
this phase change? Figure 18 plots the 
total number of rows of the strategy 
table that were consulted for each 
value of N along the same C = 200 
line used in Figure 17. This represents 
the total number of unique supplier 
states (overloaded or underloaded) 
over m=6 turns that the agents have 
seen. These histories are used by the 
agent’s strategies to select the supplier 

a. Mean Consumer 
Wealth

b. Mean Variance in 
Supplier Load

a. Mean Consumer 
Wealth

b. Mean Variance in 
Supplier Load  

Figure 16: Phase Shift when Load ~ Capacity.—Overall 
system performance drops dramatically around N = C. 
Each point is the average of 13 runs of 10k turns; m = 6. 
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Figure 17: Mean load variance detail.—This plot 
shows each of the 13 runs at each N ∈ {201,210} for C 
= 200, m = 6. At N = 205 and N = 206, instances of the 
system are distributed across two distinct states, compa-
rable to the coexistence of two physical phases (e.g., ice 
and water). 
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in the next turn. This value peaks just 
over the coexistence region identified in 
Figure 17, and drops away elsewhere. 
The inset (for a system with N = 61) 
shows that it is as low for N >> C as it 
is for N << C.  

It has been a commonplace in the con-
straint analysis community that con-
straint satisfaction problems exhibit 
Easy-Hard-Easy effort profiles, while 
constraint optimization problems ex-
hibit Easy-Hard profiles. The Mini-
RAG is an optimization problem, but 
exhibits an overall Easy-Hard-Easy 
profile. We explore this discovery fur-
ther in [24]. 

We can develop an intuition supporting 
this pattern of computational load. The peak near the minority game, and the valleys on either 
side, represent qualitatively different dynamics in the game, resulting from differing numbers of 
states accessible to the system. At N = C+1 (201 in Figure 18), due to the structure of the game, 
only 64 different states over m=6 turns are possible. This results in the transient dip in the load 
profile at N=C+1. Near N » C+1, there are a total of 729 different states over m=6 turns. As one 
moves into the valleys, the probability increases that the system will see fewer of the possible 
states since either both suppliers will always be overloaded (for N >> C) or underloaded (N << 
C) over most or all of the m=6 turns. The ability of a given population of agents to distinguish 
these states depends on the distribution of strategies (generated in our case randomly and fixed 
for the duration of the game).  

The load represents the entire history of the experimental run. The σ2/N plots in Figure 16b just 
show the variance near the end of the run after the population has settled into a pattern. Both the 
upper and lower populations experienced nearly all the possible states during the game. At some 
point in the game, for six consecutive turns, both suppliers were overloaded. Strategies of agents 
in the lower band were able to respond to this history with choices that maintained the supplier 
loading balance (keeping both suppliers overloaded). Strategies of the agents in the upper band 
were not able to maintain this balance and hence that history did not drive the system to a stable 
regime, rather the agents continued to generate historical states that included both underloaded 
and overloaded suppliers resulting in a higher loading variance.  

In Mini-RAG, the critical feature driving the phase transition is the diversity among the agents 
and their strategies. Some of this diversity is frozen into the agents through the randomly gener-
ated strategies, and some of it emerges as the agents dynamically learn to prefer one strategy to 
another and so distribute themselves over the problem space. The emergent dynamics behave dif-
ferently on the peak and in the valley, and in between they take longer to converge. 

Near the point where the demand on the system balances the system’s global capacity, we ob-
serve a transition in the system’s dynamics, in one of our chosen metrics, the probability of a 
consumer to gain a resource. Thus, for the purpose of controlling the performance of the system 
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Figure 18: Computational effort.—The number of 
different states over m=6 turns that agents must con-
sider peaks near the transition region (N = 205, 206). 
Inset: Plot from N<<C to N>>C for C=120. 
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on the basis of its known dynamics, it is important to understand the conditions, under which a 
particular system settles on either phase in the overlap region. We initiated a set of experiments 
and analyses to explore this essential question. 

At certain configurations of the 
Mini-RAG’s main parameters M 
(length of accessible history), N 
(number of consumers), G 
(number of suppliers), and C 
(capacity of any individual sup-
plier), the non-deterministic na-
ture of the agents’ decision 
processes drive the system into 
one of two fundamentally dif-
ferent phases. Figure 19 shows 
an example of the phase change, 
plotting the “Standard Deviation 
of the Group Size” metric (σ2/N) 
for 32 individual experiments 
with M=9, N={31,…,37}, G=2, 
and C=15 (note that demand is always greater than capacity). To enhance the readability of the 
diagram, we plot the individual experimental result for a particular value of N offset around the 
actual integer value on the horizontal axis.  

In this particular experiment, systems with N=34 or 35 consumers may end up either in the vari-
ability region (high σ2/N), or in the low variability region (low σ2/N) of the system dynamics. In 
the Mini-RAG, a high variability means that on average there is a poor allocation of resources 
since in any run of the game there is a high probability that the number of agents is not evenly 
balanced on the two resources. We investigated the hypothesis that the strategy tables of the con-
sumer agents determine which region a particular instance of the game will occupy. Each con-
sumer has two randomly chosen strategy tables that define for any possible input string of M*G 
bits (the state of each supplier in the last M cycles), the supplier that the consumer should select 
for the next round of the game. The possible input states and their responses are rows in a strat-
egy table. Each strategy table is scored based on how well the agent would have performed had it 
chosen that strategy table. In each cycle a consumer will follow the suggestion of the strategy ta-
ble with the highest score and break ties among strategies randomly. Thus, the entries in the 
various strategy tables determine the behavior of the consumer population. 

To verify our hypothesis, we used strategy tables from systems that ended up in the high or low 
variability region in the experiment shown in Figure 19. These were then used as the starting 
strategy tables for another run of experiments. Under several different variations, the configura-
tion of the strategy table was only a minor determinant in the final state of the system.  

The key finding of this experiment is that it is not possible to choose a single strategy at the out-
set of system that is able to guarantee that the system will end up behaving in a desired fashion 
when it nears its capacity limits. Thus static approaches to solving the problem (such as finding 
the "best" design of a system) will fail to address the complex dynamics that they are subject to. 
We focused the rest of our efforts on dynamic methods that can adapt to the system based on its 
performance.  

 

Figure 19: Overlap Region in the Mini-RAG Model 
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3.3 Adaptive Mini-RAG 
Next we chose a learning approach to adapt to the state of the system. The purpose of our local 
adaptive rules is to influence the dynamics of the Mini-RAG model at runtime, based on the cur-
rently observed operation of the system. To cope with the inherent uncertainty and incomplete-
ness of information and the dynamic nature of the resource allocation process we instantiate a 
generic forgetting process for each probabilistic Mini-RAG control rule. The forgetting process 
is inspired by the truth maintenance mechanism in marker-based stigmergic systems, such as so-
cial insect colonies [4, 23]. In these systems, the current local concentration of highly volatile 
chemical substances (pheromones) previously deposited by agents (e.g., insects) influences the 
outcome of probabilistic decisions of other agents, who, in turn, may deposit pheromones them-
selves. The continuous evaporation (proportional reduction of local concentration) of the phero-
mones ensures that any information that is not constantly maintained (new deposits) automati-
cally vanishes from the system’s memory. 

In the following sections we describe a number of adaptive mechanisms that we designed to in-
fluence the emerging dynamics of our Mini-RAG model at runtime. These mechanisms are based 
on probabilistic decision rules, whose probability values are decreased by the automatic truth 
maintenance mechanism and increased by learning rules. We explore dynamic adjustments to the 
number of consumers N, the number of suppliers C, and the use of strategies S. 

3.3.1 N-Learning 
In the Mini-RAG model, each consumer must bid for a resource in each cycle. In a situation 
where there are many more consumers than resources in the system, this requirement may drasti-
cally reduce the probability of success for the individual consumers (Mean Award Rate metric), 
depending on the chosen award policy (binary or partial satisfaction). In other resource allocation 
systems, having a large number of agents bidding for limited resources significantly increases the 
amount of time the system requires to negotiate a solution. A standard approach to address this 
problem is to drop some agents out of the bidding process early on, so the other, more important 
demands can be met without swamping the system in negotiations that are doomed to fail.  

We introduce an adaptive decision rule that allows the individual consumer to decide in each cy-
cle, whether to actually send in a bid or not. The No-Bid rule is based on a No-Bid Probability 
(NBP) value in each consumer agent, which is decreased by the automated truth maintenance 
process using a system-wide No-Bid Evaporation (NBE) factor. 

Table 6: Versions of the N-Learning Rule 

Name Description 
Global 
State 

A consumer increases its No Bid Probability (NBP) value if all G suppliers 
had been overloaded during the last M cycles. This rule requires global infor-
mation on all suppliers. 

Last Cy-
cle Load 

A consumer increases its NBP value if all G suppliers had been overloaded in 
the last cycle. This rule requires global information on all suppliers. 

Last Cy-
cle 

Award 

A consumer increases its NBP value if the bid it had submitted during the last 
cycle did not return a full unit of the requested resource. In difference to the 
other rules, this rule increases the NBP value by the missing portion of the re-
source (1 - consumer award). This rule requires only local information. 
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The learning rule, which increases NBP by 1-NBE, fires when it perceives a situation where too 
many consumers bid for resources. We experimented with three versions of this rule, which use 
consecutively less global information. Table 6 specifies these variants. 

The plots in Table 7 show the results of a representative experiment that we performed with the 
various N-Learning rules. We configured our system to contain two suppliers (G=2) with thirty 
resources (C=30) each and we varied the number of consumers (N) from 41 to 80. In all experi-
ments we allowed the consumers to use the load history of the last eight cycles (M=8) in their 
strategy decisions. We executed 13 identical copies with different random seeds, using binary 
and partial satisfaction policies and applying all three variants of the N-Learning rule as well as a 
no-learning experiment (uncontrolled Mini-RAG) for comparison. 

We plot the Mean Group Size and the Mean Award Rate metrics for the different learning rules 
and award policies. As we can see in the Mean Group Size metric, N-Learning in general reduces 
the number of bidding consumers. Comparing the three learning rules, we also notice that the ef-

Table 7: N-Learning Experiments (m=8, G=2, C=30, NBE=0.9) 
Met-
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fect of the Last Cycle Award rule begins at smaller N than the more global rules. This difference 
can be explained by the fact that none of the global rules can fire before there are enough con-
sumers to overload both suppliers (N>G*C), while only one overloaded supplier is required to 
fire the local rule. 

In the case of the binary award policy, the Last Cycle Award rule generally leads to a larger 
number of consumers dropping out (highest average NBP) followed by the Last Cycle Load rule, 
and finally the Global State rule. This order is not surprising, since it is more likely that only one 
supplier is overloaded than both suppliers being overloaded once; and having both suppliers be-
ing overloaded eight (M) times in a row is even less likely. But, the more likely the firing of an 
N-Learning rule is, the higher (on average) will be the No-Bid Probability (NBP). For extremely 
overloaded systems (not shown here), the probabilities of all three events approach 100 percent. 

The Mean Award Rate metric tells us the probability of a consumer to successfully acquire a 
resource in an average cycle. All N-Learning rules are as good or better than the uncontrolled 
Mini-RAG when the capacity is greater than demand. We also find that the Last Cycle Award 
Rule outperforms the Last Cycle Load rule, which is still significantly better than the Global 
State rule. The Last Cycle Award Rule performs the closest to the optimal behavior, which is 
C/N for N>G*C. This rule is the most aggressive in its learning, and thus tends to drop out more 
consumers. 

In the case of partial satisfaction, we see the same Mean Award Rates in the first phase. But the 
second and third phases differ significantly. In the third phase, both suppliers are constantly 
overloaded, which guarantees, that all 60 units of resource are shared among the consumers. 
Thus, for the no-learning case we see a decrease of the Mean Award Rate that follows G*C/N – 
the maximum possible award. In the second phase one of the two suppliers sometimes receives 
fewer bids than it has capacity and thus some resources go unused. Therefore, we see a less than 
optimal average system performance. 

For the Mean Award Rate metric all the N-learning rules perform worse than no-learning. This is 
to be expected. To get the highest award rate, you need to have all the consumers bidding since 
then they will all receive at least a partial award. If you drop out any consumers, then you de-
crease the total award possible and hence the Mean Award rate metric (which is the mean among 
all consumers even those not bidding). The N-learning rules perform better than no-learning on a 
different Mean Award Rate metric we call the Effective Mean Award Rate. The Effective Mean 
Award Rate is the average award taken over just the consumers participating in the bidding. As 
can be seen in Table 7, all three N-learning strategies perform better than no-learning on this 
metric with Last Cycle Award outperforming Last Cycle Load which outperforms Global State. 
This is the desired behavior. Everyone does equally poorly when you include all the consumers. 
Dropping out some lower priority consumers means that higher priority consumers can receive a 
higher average award than otherwise possible.  

We draw two major conclusions from our discussion of the N-Learning approach to the control 
of the Mini-RAG: 

1. Reducing the effective load (i.e. the number of consumers bidding) on a binary award re-
source allocation system has the potential of improving the system’s performance. The more 
aggressive learning strategies perform much better than the less aggressive strategies. 
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2. Reducing the effective load on a partial award resource allocation game can improve the per-
formance of the consumers that do bid at the expense of reducing the total award for the sys-
tem.  

In all cases, it is important to understand the metrics that make the most sense for the application 
at hand. Once that metric is known, 
appropriate N-learning strategies to 
optimize for that metric can be devel-
oped. 

3.3.2 C-Learning 
The consumers in the Mini-RAG 
model tend to have equal preference 
for each supplier. This uniform distri-
bution of consumer preferences can-
not be guaranteed in more realistic re-
source allocation scenarios. Rather, 
driven by various influences (e.g., 
past experience, geographic location, 
pricing strategies), there will be a dis-
tinct preference mapping of consum-
ers to suppliers. In an attempt to re-
produce this aspect of real resource 
allocation systems, we extend our 
Mini-RAG model, assigning each of 
the G suppliers a probability, with 
which a consumer’s strategy will se-
lect the supplier. As a consequence, 
we observe an average load distribu-
tion over the population of suppliers 
that reflects these probabilities. 

Non-uniform consumer preferences 
create a new potential for sub-optimal 
system performance and thus require 
an additional adaptive process. The 
optimal utilization of resources no 
longer depends on the balance be-
tween system wide capacity and con-
sumer load alone. Rather, the distribu-
tion of the capacities across the sup-
plier population must match the non-
uniform consumer preferences. 

The second plot in Table 8 illustrates 
the decreasing performance (Mean 
Award Rate) as the consumer prefer-
ences become more and more tilted 

Table 8: Tilted Consumer Preferences Experiment 
(m=8, N=61, G=2, C=60, Mean over 13 experiments) 
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(as P[S1], the probability of selecting Supplier 1, approaches 0). We also observe that the strategy 
scoring mechanism of the uncontrolled Mini-RAG still is capable of offsetting the preferences in 
the supplier selection to create less imbalance than the consumer preference settings would have 
generated. This is shown as the difference between the dotted line and the observed Mean Group 
Size of Supplier 1 in the top plot. 

The plot in the third row of Table 8 show the results of an experiment in which we tilt the con-
sumer preferences, but this time we manually adjust the supplier capacities to match the imbal-
ance in the consumer preferences. As expected we find an increased performance on the Mean 
Award Rate metric when P[S1] < 25% compared to the non-tilted capacities. Still there is a drop 
off in performance for P[S1]<10%. We suspect that finite size effects in the probabilistic choice 
of suppliers by the strategies are the cause of the drop-off in performance. 

We designed an adaptive mechanism (C-Learning) that enables the individual suppliers to 
change their capacity by trading resources with the goal to match the perceived consumer prefer-
ence distribution. In the C-Learning mechanism, suppliers trade resources one unit at a time 
based on whether they were overloaded or underloaded in the previous cycle. C-Learning does 
not change the total resource capacity of the system, it just seeks to find an optimal balance of 
these resources across the supplier population. 

The plot in row 4 of Table 8 shows the results with C-learning. The adaptive results are slightly 
better than the fixed ones, even though the fixed experiment distributed the resources to exactly 
match the consumer preferences. We explain this improvement by the fact that the consumer 
preferences are probabilistic, and during the run of a particular experiment, the random choices 
of the strategies may differ from their expected mean. With the adaptive rules the suppliers re-
main capable of adjusting their resources exactly to the emerging consumer preferences and thus 
improve the performance. This advantage of the adaptive approach is especially visible in the 
performance of the extremely unbalanced systems, where the limited size effects distort the pre-
set consumers’ preference distribution. 

The two main conclusions we can draw from the C-Learning are: 

1. Local resource trading among individual suppliers can optimize the global distribution of re-
sources to cope with non-uniform consumer preferences. 

2. Adaptive mechanisms have the potential to outperform static configurations set to the opti-
mal average value. 

3.3.3 S-Learning 
S-Learning is another promising adaptive learning mechanism. While N-Learning and C-
Learning modify the effective load and the effective capacity of the resource allocation system, 
the external configuration parameters of the system, S-Learning focuses on the internal decision 
processes of a consumer. 

In the uncontrolled Mini-RAG model, each consumer has S strategies (in all our experiments 
S=2). A new row is added to each of the strategy tables each time a new historical state (bit string 
with the load history of the G suppliers over the last m cycles) is encountered that was not al-
ready present in the strategy tables. Any future occurrence of that historical state produces the 
same response from the strategy table, regardless of the global dynamics of the system. 
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Additional adaptivity in the strategy selection will permit the system to cope with changing dy-
namics. Such changes occur, for instance, when 
the system moves from the “scarce resources” 
phase to the “limited resources” phase, or when 
the distribution of resources in the system has 
changed. A set of consumer strategies, which had 
gained dominance (larger wealth) over other 
strategies in one phase, may not provide a suitable 
response in the new phase. To adapt to these 
changes, the wealth discrepancies among the 
strategies of a consumer could be continuously 
eroded over time. The addition of this truth main-
tenance mechanism allows the consumer to adapt 
its selection of strategies as the environment 
changes. It is also possible for a consumer to 
change its response to a state it encounters. Adap-
tivity at the level of rows in the lookup table 
greatly increases the granularity of the strategy 
learning mechanism of a consumer, who in the 
uncontrolled Mini-RAG model had to rely solely 
on the “intelligent” choice between the S strate-
gies. 

3.4 Entropy Analysis 
A persistent question throughout studies of the 
Mini-RAG is the degree to which the results ob-
served differ from random behavior. To study this 
question in a disciplined way, we analyzed the en-
tropy over states of the system (output entropy, 
Section 2.3.4) under the hypothesis of random ac-
tions (Appendix B), and compared the result with 
experiments. The results (exemplified in Figure 
20) show a clear deviation from the random base-
line in both the magnitude and structure of the re-
sults. 

4 Logistics Tracks 

4.1 MICANT-RAG 
The MICANT team led by Vanderbilt University 
is developing a system for scheduling aircraft 
maintenance. We studied their system and imple-
mented the architecture shown in Figure 22. In 
this simple game, a variable number of aircraft 
agents generate maintenance tasks with variable 

 

Figure 20: Comparison of system state 
entropy.—Top is actual Mini-RAG result 
(G = 4, C = 100), center is random baseline 
per Appendix B, and bottom is Experiment 
- Baseline. Experimental result is every-
where lower than baseline. 
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frequency. Tasks request resources through a 
single Maintenance manager. The Maintenance 
Manager maintains a preference mapping for the 
suppliers that supply parts, labor, and bay space 
for the task. The Maintenance manager randomly 
requests resources (weighted by the preference 
mapping) among the possible suppliers. If it fails 
(because the supplier is already busy with a 
task), the maintenance manager re-tries after a 
timeout. With task loads that are non-saturating, 
the number of waiting tasks increases asymptoti-
cally with an oscillation of constant period that 
persists indefinitely (see Figure 21). 

Our experiments with this system vary the task 
generation rate and resource recovery rate, and 
look at the number of tasks awaiting access to 
resources. 

In the first round, tasks arrive at a fairly constant rate, and need three kinds of resources to be 
executed (labor, space, and part). The plots for the number of tasks concurrently negotiating for 
resources show several interesting features when the task generation rate is close to the recovery 
rate: 

1. There is a fine-structure oscillation with a period on the order of 160k cycles.  

2. The number reaches an asymptote.  

3. The approach to the asymptote is by way of an initial overshoot (not visible in the ex-
ample in Figure 21). 

We developed a continuous model (Appendix A) to see what features of the results could be ex-
plained analytically. The continuous model predicts the asymptote, but not the oscillations or the 
overshoot.  

We hypothesized that the oscillations are due to phase locking among tasks, based on initial 
lumpiness in their distribution 
and the very small variability in 
their recurrence. To test this, we 
ran another round of experi-
ments in which tasks require 
only a single resource, but occur 
with high variability (standard 
deviation = 10% of the failure 
mean). With this configuration, 
the plots continue to show oscil-
lation and asymptoting, but the 
initial overshoot is less clear. 
The hypothesis is not confirmed. 

We also explored the effect of 
 

Figure 21 Oscillations in number of tasks waiting 

aircraft

task

maintenance
manager

supplier resource

aircraft

task
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Figure 22: Agents in the MICANT-
RAG.—Accomplishment of a maintenance 
task requires coordination among the aircraft 
being maintained, a maintenance manager, 
and one or more resources (e.g., parts, work-
shop space, mechanics), each brokered by a 
supplier. 
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deliberately locking multiple tasks in at the same time with zero variance. With a bucket size of 
1, the number of waiting tasks does not change significantly over the run, while with larger 
bucket sizes, we again get oscillations, asymptotes, and overshoots, but with better-structured os-
cillations (saw-tooths with rapid rise and slow drop). 

We have also done preliminary exploration of a configuration in which the task agents select 
from among five supplier agents on the basis of a statically weighted preference map. Oscilla-
tions are much finer, and asymptote and overshoot are less apparent. 

A shift in priorities for the MICANT team led us not to pursue this model further. 

4.2 SNAP 
The CAMERA system at ISI allocates resources to training missions for Marine aviators. They 
performed some experiments for us with their own code, and we implemented a version of the 
RAG, the ISI-RAG, to permit us to conduct further studies. 

4.2.1 Problem Structure 
Each mission has a number of requirements, each of which can be satisfied by a number of re-
sources. The resources are bombing ranges, pilots requiring training, qualified instructors, and 
aircraft. The most constrained resource, empirically, is the set of ranges. The CAMERA team has 
developed a number of resource allocation algorithms. The one currently being transferred to the 
Marines is a greedy system, which works as follows. 

1. Each mission bids first for range time, which is the most constrained resource. It queries the 
ranges for their available time slots. It receives a list of all the time slots that the range direc-
tor has made available, including those that have already been committed to other missions. 
It then marches through all available time slots in 30-minute start intervals looking for a time 
slot of sufficient length that is not already committed. 

2. After securing a range time slot it identifies the pilots requiring that training, qualified in-
structors, and aircraft qualified for the mission type. It then initiates three parallel requests for 
commitment (RFC’s):  

• The first pilot in the ordered list of pilots 

• All qualified instructors 

• All qualified aircraft 

3. From the instructors and aircraft it accepts the first to respond and decommits to all the rest 
that commit. For the pilot, it will send an RFC to each pilot in turn until it finds the first pilot 
who can commit. 

4. If it cannot find any pilot or aircraft, or instructor to commit to that time slot, it decommits all 
commitments and samples the next 30-minute start time on the range. 

4.2.2 Experiments with the ISI Code 
In this system, each task requires multiple types of resources (pilots, instructors, aircraft, and 
ranges), and resources take the form of time slots. As a convenient way to adjust the relative load 
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and capacity of the system, we hold the 
number of missions constant at 50, and 
vary the time horizon over which the mis-
sions could be scheduled. In practice the 
planning horizon is constrained by when 
the missions need to fly, but for our ex-
perimental purposes, we ignore these con-
straints and focus simply on the percent-
age of the 50 missions that can success-
fully be scheduled. 

Figure 23 shows the dependency of sys-
tem performance (% of missions sched-
uled) and computational effort (the num-
ber of slots that have to be tried) on the 
planning horizon, based on experiments 
kindly performed for us by Alejandro 
Bugacov at ISI. The less constrained the system (the longer the horizon), the higher the perform-
ance, with no sharp transition. However, unlike the RAG, the effort also increases with the plan-
ning horizon. In terms of movement from high to low performance, the profile is neither Easy-
Hard (as in some optimization systems) nor Easy-Hard-Easy (as in decision problems and the 
Mini-RAG), but Hard-Easy! The least work is needed for the shortest planning horizon, when the 
system is most tightly constrained. The system’s greedy algorithm assembles sets of resources 
for each mission sequentially, and does not explore alternate configurations if the initial configu-
ration fails. Thus the effort expended, like the system performance, is monotonic in system ca-
pacity. We speculate that if the missions selected range slots randomly rather than using the 
greedy approach, there would be fewer collisions among missions vying for the same time slots 
and the effort would decrease as the planning horizon increased, resulting in an Easy-Hard-Easy 
profile. These results are discussed further in [24]. 

4.2.3 ISI-RAG 
The ISI-RAG model was devel-
oped to account for certain fea-
tures of CAMERA. Specifically, it 
addresses issues of assembling a 
set of specified resources that must 
align temporally with one another. 
Thus a Supplier in this model con-
sists of a Resource with a number 
of Time Slots available. The game 
proceeds in major and minor cycles. During the major cycles each Task agent attempts to reserve 
one time slot on the resource. During the k minor cycles each Task agent attempts to reserve an-
other slot on the Resource (according to its strategy) until it is successful in finding an open (un-
reserved) slot. Table 9 lists the entities and parameters for the ISI-RAG. 
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Figure 23: Performance and Effort in CAMERA Base-
line.—Both performance and computational load increase 
as constraints decrease. 

Table 9: Entities and Parameters for the ISI-RAG 
Parameter Description 

N Number of Task Agents (TAg) 
G Number of Slot Agents (SAg) in resource 
S Number of Slot Strategies (SS) in TAg 
L Number of (equally probable) input states for a SS 
k Length of output sequence of a SS 
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4.2.3.1 Task Agent (TAg) 
Mission.—In each major cycle of the game, each TAg has to acquire one time slot (represented 
by a SAg) on the resource. The k-sequence in which the TAg approaches the SAg’s of the re-
source is selected by the most wealthy SS of the TAg. The TAg awards its SS according to their 
performance. 

System Knowledge.—A TAg has access to all SAg’s within the resource. 

Internal Knowledge.—A TAg has S competing Slot Strategies to select the k-sequence SAg’s 
in which it places its orders. A TAg has a certain wealth measured in points gained in the past 
major cycles. 

4.2.3.2 Resource Agent (RAg) 
Mission.—In each major cycle of the game, the RAg facilitates the mating of its time slots 
(SAg’s) with TAg’s. 

System Knowledge.—None. 

Internal Knowledge.—A RAg has G time slots, represented by SAg’s. 

4.2.3.3 Slot Agent (SAg) 
Mission.—In each minor cycle until the time slot is taken, the SAg accepts orders from TAg’s, 
selects one winner, and from then on, blocks the time slot on behalf of this TAg. 

System Knowledge.—None. 

Internal Knowledge.—A SAg manages all the incoming orders in one minor cycle and keeps 
the reference to the winning TAg. 

4.2.3.4 Slot Strategy (SS) 
Mission.—In each major cycle, a SS selects a k-sequence of SAg’s of the resource, based on the 
current global state of the system. 

System Knowledge.—A SS knows the current 
global state of the system that is represented by 
a number from the interval [0,L), which is 
communicated at the beginning of each major 
cycle. The SS also knows all SAg’s of the re-
source. 

Internal Knowledge.—A SS has a certain 
wealth measured in points gained in the past 
major cycles. 

Figure 24 shows one of the results from these 
experiments. The Mean Award Rate represents 
the mean number of points awarded to the 
agents. Points are awarded based on how 
quickly the agent’s strategy secures it a time 
slot. The figure shows the standard deviation of 

 

Figure 24: ISI-RAG Mean Award Rate 
(L=15, K=25, N={25,75}, G={25,75}, S=2) 
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this award rate as the number of time slots available (G) and the number of agents looking for a 
time slot (N) varies. This represents a measure of the behavior of the system. As the standard de-
viation increases, the agents are less likely to have consistent results. As can be seen from the 
figure there is a transition in the standard deviation that sharply increases as the number of agents 
approaches the capacity (number of slots) of the system. This result is consistent with the results 
we have seen for the mini-RAG and other simpler resource allocation games. This provides fur-
ther evidence that we should be able to see similar dynamics in the ISI system. 

4.3 Marbles 
ISI’s most mature set of algorithms for scheduling training missions is called “Marbles,” because 
the tasks interact with one another by trading counters much as children trade marbles. Our stud-
ies of Marbles have three aspects. We tried, with varying success, to develop a rough estimator 
of the difficulty of a Marbles problem, then explored the possibility of a Marbles RAG. In the 
end, our best results came through experiments that we conducted with our own modifications of 
the Marbles code. These experiments focused on the ISI MarbleSize algorithm, and explored its 
necessity (i.e., can a simpler solver do as well), and its sufficiency (i.e., can an enhanced solver 
do better)? 

4.3.1 Problem Structure 
Figure 25 shows the basic structure of a Marbles problem. There is a set of resources (R) that is 
available to satisfy a set of requirements (Q). Each requirement is part of one (and only one) task 
from a set of tasks (T). There also exists a set of eligibility markings (E) (the X’s in Figure 25) 
that denote if a given resource is eligible to satisfy a specific requirement. We call a cell with an 
X, an “engagement.”  

Finally, every task is assigned a positive value, and a task value is only ‘recovered’ if every re-
quirement of the task is assigned a resource. In other words, if a task has all its requirements sat-
isfied, then the total 
recovered value of the 
overall problem solu-
tion will include the 
full value of the task, 
otherwise 0 value is 
included from the 
task.  

A specific marbles 
problem is static in 
the sense that the sets 
of R, Q, T, and E do 
not change (i.e., time-
invariant). The as-
signments of re-
sources to require-
ments may change 
during the solution 
generation process, 

 

Figure 25: The Basic Structure of a Marbles Problem (from [5]) 
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but the R, Q, T, and E sets will remain unchanged. 

A ‘valid’ Marbles problem observes the following rules: 

• Every resource can fill at least one requirement. 

• Every requirement has at least one resource that can fill it 

• At most one resource will be assigned to a requirement. 

• Every task has at least one requirement. 

• Task value is recovered only when all requirements are filled 
for the task. 

The Marbles problems we investigated were in the following 
ranges: 

• R (resources) ∈ [10, 100] 

• Q (requirements) ∈ [30, 1600] 

• T (tasks) ∈ [5, 400] 

• E (eligibles) ∈ [100, 2000] 

Some of the analysis provided later looked at smaller problems in 
order to gain some insight, but simulation experiments worked 
with the problem scales stated above. 

ISI reports on three solver performance measures: 

• recovered task value; 

• messages sent; 

• execution time. 

In our experiments, we focused on recovered task values, since 
some of our comparison methods used centralized algorithms that 
did not explicitly send messages, and execution time was subject 
to idiosyncracies in computer configurations. 

4.3.2 Difficulty Metrics 
To guide experimentation, we sought a general characterization of the difficulty of a problem 
posed in the form of missions, requirements, and resources, as in Figure 25.  

Consider, for instance, the simplified problem instances in Figure 26. Each problem has Q =4 
and R = 4, and we assume that each requirement is a separate mission, all of equal value. Re-
quirement q0 is a “null” requirement to which an unused resource is assigned, and it is the only 
requirement that can have more than one resource selected in a valid solution. Resource r0 is 
similarly a null resource that is assigned to a requirement to which no other resource is assigned, 
and it is the only resource that can be assigned to more than one requirement.  

A ‘Marbles’ problem appears to be most easily solved when the eligibility set (E) is either at its 
minimum or its maximum size. A metric that captures the size of the eligibility set relative to the 
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Figure 26: Sample Mar-
bles Problems 



   

  31

other problem dimensions is a density metric, δ = E / (R * Q) ∈ [1/R, 1]. Intuitively, problem A 
(at the top of the figure, δ = 1/R = 0.25) should be very easy to solve, because there are no con-
flicts, either among resources or among requirements. Problem C (at the bottom, δ = 1) should 
not be much more difficult, since any resource can satisfy any requirement. Problem B (δ = 7/16 
= 0.44) should be the most difficult of the three, since there are non-trivial conflicts. For exam-
ple, if r3 is assigned to q2, no solution is possible for q3. (The notion of complexity as residing 
midway between two extremes of problem structure reflects the discussion in [11 pp 129-136].] 

We explored several approaches to this problem, in addition to ISI’s approach. For the sake of 
this discussion, we assume that the four requirements in the examples in Figure 26 are independ-
ent tasks, with values 1, 2, and 3, respectively. 

SAT-Based.—ISI’s approach to analyzing Marbles problems in the ATTEND project is based 
on converting the problem to a SAT representation and characterizing it using known character-
istics of SAT. We did not pursue this approach for two reasons. First, this effort would have been 
duplicative of ISI’s effort. Second, our philosophy is to try to base our metrics on domain-level 
characterizations of the problem rather than those particular to a specific computational approach 
(Figure 3). 

Probabilistic Models.—It should be possible to assess the conditional probability of each poten-
tial engagement and roll these up into an assessment of the overall difficulty of a given problem. 
That is, one should be able to replace each “X” with a probability that the given engagement is 
occupied, such that each row and each column sums to 1. The difficulty of a requirement is the 
probability that it will not be satisfied (the probability that it will use r0). The difficulty of a task 
is the sum of its requirement difficulties, and the difficulty of an entire problem is the average of 
task difficulties, weighted by task values. 

We tried several approaches to computing engagement probabilities. All failed either through 
lack of tractability or because the results they yielded were not intuitively meaningful (e.g., 
asymmetric probabilities for symmetrically aligned engagements). 

• A formal analysis of conditional probabilities, using Bayes’ Theorem. This approach proved 
intractable. In general, the sets of equations generated were overconstrained, (e.g., ten inde-
pendent equations for seven unknowns) and were nonlinear. Solving such systems amounts 
to solving the entire problem. 

• Focus independently on the columns and the rows.  

• The column (the resource) wants to choose the requirement with the highest value. If the 
value of requirement i is vi, the resource should assign itself to that requirement with 
probability vi/∑vi, which we call the “myopic value-based probability” (MVP). This ini-
tial value automatically satisfies the probability axiom ∑MVP = 1 by columns, but does 
not take into account row interactions. To handle these, we normalize across rows, then 
across columns, and so forth until the system converges.  

• A symmetrical perspective views the requirement as picking a resource on the basis of a 
myopic cost-based probability (MCP) 
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where ci is the cost of resource i. Again, by itself this estimate is 
inadequate. 

• One could naively take the engagement probability as MVP * 
MCP. This approach yields difficulty scores for (A, B, C) of (0, 
0.44, 0.69), which does not satisfy our intuition. 

• Instead of iterating the values over the entire structure, one could start 
with a single engagement and iteratively extend it (Figure 27). Ini-
tially, one assesses the impact on q1r1 of the engagements in the same row and column (solid 
arrows). At the next step, one refines this estimate by including the impact of engagements in 
the rows or columns next further removed (dashed arrows). 

• A related approach focuses attention on the graph induced by the problem matrix in the fol-
lowing way: Each engagement is a node, and there is an edge between two nodes just when 
their engagements share a common resource or a common requirement. Then at the bottom 
level, the probability of an engagement is 1/(1 + degree of the engagement’s node). At the 
next level, one reduces the contribution of each neighboring node to the engagement’s de-
gree, based on the neighboring node’s own degree, and so forth. This approach depends sen-
sitively on the connectivity of the graph, and in practice proves to be as complex as actually 
solving the problem. Even at second order, example B yields a negative difficulty for q4.  

• One could also do a Monte Carlo search of possible system states. A state is a vector with as 
many elements as there are resources. The value of an element indicates the requirement to 
which that resource is assigned. One generates states randomly, filters out illegitimate states, 
and then estimates engagement probabilities empirically. This approach is the most promis-
ing of those that we explored, but it was the last probability-based approach we considered, 
and resources did not permit exploring it further.  

Ad-Hoc Models.—In the end, the most useful measures were fairly ad-hoc. 

A normalized contention metric captures much of the flavor of the previous models, in a more 
tractable form. 

• The contention for an engagement is the number of engagements in its column, divided by 
the number of engagements in its row. Thus the more requirements want a resource, the 
higher its contention will be, while the more alternative resources are available, the lower the 
contention will be. 

• The contention for a requirement is the maximum contention across all possible resources, 
normalized by the sum of the maximum contentions across all requirements. 

• The contention for a task is the sum of the normalized contentions of its requirements. 

The contention metric for (A, B, C) is (0.250, 0.257, 0.250). Thus it does capture our intuition 
that case B is more difficult than either A or C. 
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Figure 27: Iterative 
Structure Exten-
sion 
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The only application of the value of a task in the contention metric is in the final weighted com-
bination of the task contentions into an overall problem contention. A more fundamental ap-
proach is to ask what proportion of the total value available can be recovered for a given prob-
lem. The sum of the task values is an absolute upper bound on the total recovered value from a 
problem, but a very loose one. For very small problems, it is feasible to generate all possible so-
lutions and find the one with maximum value. The ratio of this maximum value to the sum of 
task values then becomes a measure of problem ease (and the inverse, a measure of difficulty). 
Unfortunately the problem is NP-complete, so identification of optimal recovered value is not 
feasible for larger problems. 

As a surrogate, a fairly effective upper bound for an optimal solution can be identified. This up-
per bound is calculated a follows: 

1. Calculate the a value-per-resource  required (VPR) for each task by dividing the task value 
by its number of requirements (and therefore needed resources).  

2. Rank all tasks by their VPR from high-to-low. 

3. Select tasks for inclusion in the solution upper bound set by choosing the highest VPR tasks 
until they have used all the available resources. If the last task can only be partially satisfied 
by the remaining resources, include a pro-rated portion of the task proportional to the avail-
able resources. 

4. Add up the task values in the upper bound set, and this becomes the upper bound value of a 
solution. 

This estimate is an upper bound because no consideration is given to resolving resource con-
flicts, and this solution may not be feasible (and usually isn’t). In particular, because it ignores E, 
it gives the same answer (1) for all of our sample problems. Nevertheless, it is a useful metric for 
evaluating experimental runs, as we shall see in Section 4.3.4 below. 

4.3.3 Marbles RAG 
We were able to extend the Mini-RAG to capture the characteristics of the Marbles problem. In 
the Mini-RAG, each consumer has access to all suppliers, and needs a delivery from only one to 
satisfy its requirements. The Marbles counterpart to a consumer is a task, and the counterpart to a 
supplier is a resource. There are two important differences between Marbles and the Mini-RAG. 

• In the Mini-RAG, every consumer has access to all suppliers, but in Marbles a task has ac-
cess only to a subset of the resources (those with whom its requirements have engagements). 

• In the Mini-RAG, a consumer is satisfied if it gains access to a single supplier, but in Mar-
bles a task is satisfied only if it gains access to as many suppliers as it has requirements. 

We model these differences by defining distributions over the number of accessible and required 
suppliers per customer, and generating Marbles-like configurations accordingly. Preliminary ex-
periments with the Marbles RAG show interesting, non-trivial behavior of mean consumer 
wealth and the standard deviation of group size with MG’s m parameter. We have not pursued 
these dynamics further at this time. 
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4.3.4 Is MarbleSize Necessary 
The upperbound analysis establishes a ceiling on the recovered value for a marbles problem. As 
we will show, the ISI MarbleSize solver performs quite well in approaching this ceiling. But is it 
possible that simpler solvers would do as well? 

ISI developed a number of other negotiation-based solvers of some complexity that clearly per-
formed worse than MarbleSize. To better understand the range of solver capability, we built a set 
of ‘stupid’ solvers. These solvers start with the simplest approach (pure random assignment) and 
gradually add more problem knowledge to guide their solution strategies. The ‘stupid’ solvers 
are required (as ISI solvers are) to observe the five rules outlined in Section 4.3.1. They fall into 
two classes: resource driven and task driven. Stupid solvers, unless specified, will make random 
decisions. 

Resource-Driven Solvers.—We explored four resource-driven solvers. 

• Free Solver: resources are randomly assigned until no more assignments can be made. 
Tasks may end up with only some requirements filled, and such tasks do not recover their 
value. 

• Holdoff Solver: same as Free Solver, and tasks that reach a point where they cannot be 
satisfied are not assigned any more resources. 

• Recycle Solver: same as Holdoff, and blocked tasks must free resources already obtained. 

• Tryagain Solver: same as Recycle, and tasks that are blocked get one last chance (at the 
end) to get resources. 

Task-Driven Solvers.—We explored four task-driven solvers. 

• Zipin Solver: tasks are randomly selected to grab all the resources they need. 

• Zipinorder Solver: tasks are selected in the order of their value to grab resources. 

• Zipinvratio Solver: tasks are selected in the order of VPR to grab resources. 

• Zipzip Solver: same as Zipinvratio, and blocked tasks get one last chance (at the end) to 
get resources. 

The ‘Zipinvratio’ solver uses the same basic approach as the upper bound difficulty calculation, 
but unlike the upper bound calculation, ‘Zipin-
vratio’ must observe the constraints of re-
source eligibility (E). 

We ran the set of stupid solvers, along with the 
ISI MarbleSize solver, against two different 
Marbles problems, “Small” and “Medium” 
(Table 10). Each solver was run 21 times on 
each problem. Figure 28 plots the results for 
each solver, ordered left-to-right by recovered 
value. The upperbound for the problem is 
drawn as well. 

Quite consistently, the ISI MarbleSize solver 
produces superior results compared to any of 

Table 10: Parameters for Test Problems 
 Small Medium 

T(asks) 10 100 
R(esources) 20 100 
Q (requirements) 32 404 
E(ligible engagements) 137 3709 
Density E/(Q*R) 0.21 0.09 
Total Value 16415 28242 
Upper Bound Value 11588 17203 
Difficulty (Total/Upper 
Bound) 

1.42 1.64 
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the stupid solvers.  

4.3.5 Is MarbleSize Sufficient? 
The ISI MarbleSize solver is clearly superior to simple methods, and comes quite close to the 
upper bound. The following questions remain: 

• Is there a solver that can find a better solution (in terms of recovered value)? 

• Is there a solver that can use less messaging to negotiate a solution? 

• Is there a solver that has simpler algorithmic complexity? 

[12] addresses (at a cursory level) tradeoffs ISI found between recovered value and number of 
messages. It illustrates clearly that a point of diminishing returns has been reached. Still, a study 
of the MarbleSize algorithm revealed three potential control points where improvements might 
be affected: 

1. Determination of a MarbleSize (bid value): The MarbleSize solver chooses an initial 
value based upon a VPR calculation, and modifies it by simple halving. Is there a better 
way to choose MarbleSize? 

2. Determination of a resource set: The MarbleSize solver randomly selects a set of re-
sources to bid on that would satisfy a task’s requirements. Is there a better way to iden-
tify which resources to bid on? 

3. Determination of task dropout: The MarbleSize solver will first try one, then another, or 
randomly selected resources to bid on. If both sets fail, then MarbleSize will drop the 
task from further consideration. Is there a better way to determine when to drop out a 
task? 

We focused our attention on the third of these issues, using a variety of the pheromone-inspired 
control we developed in the Mini-RAG (Section 3.3). 

4.3.5.1 Basic Pheromone Mechanism 
In nature, a pheromone is a marker used by insects to guide their collective decision processes. 
Pheromone mechanisms have four components: 

0

2000

4000

6000

8000

10000

12000

1 3 5 7 9 11 13 15 17 19 21

Runs (from worst-to-best)

Ta
sk

 V
al

ue
 R

ec
ov

er
d

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 3 5 7 9 11 13 15 17 19 21

Runs (from worst-to-best)

Ta
sk

 V
al

ue
 R

ec
ov

er
d

Zipzip
Zipinvratio
Zipinord
Zipin
Tryagain
Recycle
Holdoff
Free
MarbleSize
Upper Bound

 

Figure 28: Stupid Solvers on Small (left) and Medium (right) problems. 
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• deposit - an entity (insect or simulation agent) marks an event (often spatially) by adding 
pheromone to an already environmentally existing base of pheromone. 

• evaporation - over time, pheromones gradually fade (unless new deposits reinforce them). 

• propagation - spatially, pheromones disperse usually with the maximum concentration of a 
deposit remaining at the original point of deposit. 

• sensing - other insects/agents make decisions or take actions based upon the pheromone lev-
els they sense in their environment. 

In enhanced MarbleSize, each task agent has exclusive access to its own 'NoBidPheromome' ob-
ject. (We do not make use of propagation, although it would be interesting to explore the effect 
of allowing agents with similar VPR’s to share pheromone and thus encourage one another to 
persist or drop out.) Pheromone strength is maintained according to the following equation: 

pheromoneStrength(t) = (pheromoneStrength(t-1) + ∑deposit(t-1)) * evaporationFactor 

where 

• evaporationFactor = 0.5, providing for an exponential decrease in the NoBid pheromone 
strength over time (and a return to task activity) if the circumstances that discouraged bidding 
previously have gone away 

• deposit(t) is a deposit for each bid LOSE message received by a task. The amount of the de-
posit is limited by a sigmoid function to a value between 0 and 1. The following is the equa-
tion for a single deposit: 

pressure
VPRbidave

e
deposit /1

1

1
−

+

=
 

where 

• pressure represents the amount of contention for a particular resource, and in these experi-
ments is simply the number of bids on the resource; 

• bidave = (sum of all current bids on resource) / (number of current bids on resource) 

• VPR is the 'value-
per-resource 
needed' that is 
computed on a per 
task basis. 

The NoBidPhero-
mone serves its asso-
ciated task in three 
capacities.  

1. It drives a 'No-
Bid' decision. 

Table 11: Enhancements of MarbleSize 
Version Base Solver Bid Skip-

ping 
Enhanced 
Dropout 

Deadline 
Response 

MarbleSize MarbleSize no no no 
MarbleSize w. hstop MarbleSize no no hardstop 
MarbleSize w. roff MarbleSize no no rolloff 
siggy4-evap.5 MarbleSize yes yes no 
siggy4-evap.5 w. roff MarbleSize yes yes rolloff 
quick-siggy4 MarbleSize no yes no 
quick-siggy4 w. roff MarbleSize no yes rolloff 
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The pheromone level corresponds 
to a probability that a task will 
skip bidding on a given cycle.  

2. It drives a 'Dropout' decision. 
Once the 'NoBidPheromone' level 
exceeds a threshold, the task alto-
gether drops out from future bid-
ding (and releases already ac-
quired resources).  

3. It is used in conjunction with a 
dynamically decreasing threshold 
to create a deadline mechanism 
for finding a solution. 

To evaluate the 'NoBidPheromone' en-
hancements, eleven runs each of 14 dif-
ferent task (and requirement) size con-
figurations were run against an unen-
hanced (control) version of MarbleSize, 
along with similar runs against en-
hanced versions. In all experiments, T = 
variable, R = 100, Q ~ 4T, E ~ 9Q, 
Density ~ .09. Table 11 summarizes the 
versions and their differences. In an 
additional control experiment set, the 
deadline was simply a forced stop, or 
'hardstop' , of the solver as opposed to a 
dynamic 'rolloff' of the NoBidPhero-
mone threshold.) 

4.3.5.2 Non-Deadline Experiments 
Figure 29 summarizes the results of the 
basic (non-deadline) experiments. Each 
chart compares the performance of the 
original MarbleSize solver with two 
enhanced versions. "Siggy" (siggy4-
evap.5) uses both the bid skipping and 
task dropout aspects of the NoBid-
Pheromone. "Quicksiggy" (quick-
siggy) uses just the task dropout. We 
observe: 

• All solvers performed at near ideal levels in terms of total recovered value. The maximum 
possible recovered value, the UpperBound, is drawn as a reference. 

• "Siggy" show significant improvement in reducing the number of bid cycles required to solu-
tion. "Quicksiggy" did even better. 
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Figure 29: Impact of Pheromone Learning on 
MarbleSize Algorithm.  
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• Both modified solvers showed significant improvement in message reduction to the point that 
the number of messages required is approximately linear with the number of tasks (and re-
quirements) in the problem. 

Closer investigation leads to the following conclusions based on the above results: 

• MarbleSize, or any solver algorithm that uses VPR (value-per-resource required) as the basis 
of its bidding mechanism, will very likely return excellent solutions in terms of total recov-
ered value. The basic MarbleSize solver sets the initial bids (the "MarbleSize") for all agents 
to be exactly the VPR. (Note: the upperbound for total recovered value is calculated by using 
the VPR.) 

• Most final task-to-resource assignments are achieved on the first 2 cycles.  

• Use of the 'NoBidPheromone' results in quickly identifying less desirable tasks and removing 
them from the bidding processing. By doing so, both messaging and cycle time are signifi-
cantly reduced with little or no loss in quality of solution (i.e., total recovered value). 

4.3.5.3 Deadline Experiments 
A second set of experiments (Figure 30) explored the introduction of a deadline into the solver 
process, requiring that a solution be delivered in a fixed amount of cycles. The above graphs 
compare quality of solution for each solver when a deadline is imposed. 'MarbleSize with hard-
stop' is simply the regular MarbleSize algorithm with a simple cutoff applied. The other versions 
use the 'NoBidPheromone' in conjunction with a rolling-off threshold: 

( )1,2tDeadlineMinThreshold −=  
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Figure 30: Impact of Deadline Mechanism on MarbleSize Algorithm 
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As the solver approaches the deadline, the threshold for task dropout decreases making dropout 
more likely. At the deadline, the threshold is zero, making dropout a certainty for all unsatisfied 
tasks. The data show that solvers that have already made task dropout decisions early, such as 
"Siggy" and "Quicksiggy," are least sensitive to the application of a deadline.  

5 ECM Tracks 
In the ECM problem domain, we worked with both the University of Kansas and Kestrel. 

5.1 University of Kansas Track 
At Lake Tahoe, the University of Kansas team reported a nonlinearity in effort as an effect of the 
amount of information transferred, reminiscent of the behavior in MG (cf. Figure 2). We worked 
with them to explore this phenomenon. Since the UK system was tightly integrated with the 
RadSim framework and did not support faster-than-real-time simulation runs, UK prepared 
stripped-down version of their Case-Based Reflective Negotiation Model (CBRNM) framework 
for our experimentation.  

Agents in the CBRNM base negotiations on their past experience, stored in a case base. In the 
application we studied, two agents negotiate over access to CPU time. The initiating agent keeps 
sending facts (evidence) to convince the responding agent that it should give up some CPU us-
age. The requested amount is defined by the parameter CPUShortage. The responding agent 
weighs each fact and adds the weight to its internal evidence level, which represents the amount 
of CPU the responding agent is willing to give up. If this amount becomes larger than the re-
quested amount, the responding agent agrees to give up the requested resources, up to its max-
CPUgiveUp threshold. If the initiating agent requests more than maxCPUgiveUp, the responder 
makes a counter offer. If the negotiation runs over the allotted time, it is aborted and no resource 
is exchanged. 

In these experiments, all negotiations run to completion (no timeout). The maxCPUgiveUp 
threshold of the receiving agent is 10%, so all negotiations for less than this threshold succeed. 
But the effort (number of messages exchanged) increases as the amount of CPU requested moves 
closer to the threshold, since it takes more evidence to convince the responding agent. Above the 
threshold, the number of messages required 
to convince the responding agent is constant, 
because the sequence of facts does not vary 
in this experiment. We define the success 
rate as the ratio of the granted resource and 
the requested resource. Above maxCPU-
giveUp, the expected success rate is max-
CPUgiveUp/cpuShortage. For all settings of 
the cpuShortage parameter, there is enough 
time and enough facts available to convince 
the responding agent to give up the requested 
resource. We never reach a timeout failure 
and we never see a counter offer caused by 
insufficient evidence. 

Figure 23 shows performance and effort in 

0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

CPU Shortage

0.2

0.4

0.6

0.8

1

%
S

u
cc

es
s:

D
o

tt
ed

%
E

ff
o

rt
:

S
o

lid

 

Figure 31: Performance and Effort in Case-
Based Negotiation.—Number of messages in-
creases, and success de-creases, as MaxCPU-
GiveUp parameter increases. 
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this simple scenario. From the structure of the problem, the distinguished point where one might 
expect phase-transition-like behavior is when cpuShortage = maxCPUgiveUp (0.1). Though 
there is no sharp transition, as load increases with respect to capacity, the quality of solutions de-
creases, and the amount of computation needed (measured by messages exchanged) increases. 

Further investigation of this problem showed that some of the abstractions made when UK sim-
plified their system for our experimentation had the effect of precluding more complex behavior, 
and we did not pursue this model further. 

5.2 Kestrel 
Kestrel recommended the graph coloring problem as an appropriate abstraction for their ap-
proach to the ECM challenge problem. We constructed a variety of RAG, the ColorRAG, to ex-
plore the dynamics of this system. 

5.2.1 Algorithm 
The Kestrel algorithm starts with a random graph of N nodes connected to K neighbors via unidi-
rectional edges. The number of nodes and neighbors does not change over time. We have im-
plemented six different graph construction mechanisms, summarized in Table 12. All results re-
ported here are from random graphs generated by the Minimum Neighbors algorithm. Measure-
ments (not reported here) show that these graphs are characterized by a short characteristic path 
length (approx. 1.3) and medium clustering coefficient (approx. 0.68). 

At any point in time, each node is assigned one of G colors. The assignment of colors to nodes 
may change over time. A node is capable of perceiving the current color of its neighbors. A 

Table 12: Graph Construction Algorithms. 
2D Field The nodes are randomly distributed on a 2D square with a side of )1/( +KNπ . On 

such a square, a radius of length 1 about a node includes on average K other nodes. For 
large N this algorithm produces a mean number of neighbors close to K. For smaller N the 
characteristic neighborhood size varies widely.  

2D Lattice The nodes are distributed deterministically on a square lattice with a spacing of 1. Any 
node within a fixed radius is counted as a neighbor. 

Minimum 
Neighbors 

Beginning with N nodes with no edges, we repeatedly pick a node randomly from the set 
of nodes with the least number of neighbors. For this node we successively add neighbors 
until there are K neighbors. Any neighbor is again selected randomly from the set of nodes 
with the least number of neighbors. The process continues until fewer than two nodes with 
fewer than K neighbors remain. The algorithm tends to produce tightly connected graphs. 

Edge Prob-
ability 

All possible unordered pairings of nodes are considered. The nodes of a pairing are con-
nected with a probability of K/N. Thus, the average node ends up with K neighbors. 

2D Nearest 
Neighbor 

The nodes are randomly distributed on a 2D 1 by 1square. In canonical order, we connect 
each node to its nearest neighbor on the square until it has K neighbors. The resulting 
graph may not necessarily be planar, but violations will be local.  

3D Nearest 
Neighbor 

The nodes are randomly distributed in a 3D 1 by 1 by 1 cube. In canonical order, we con-
nect each node to its nearest neighbor on the square until it has K neighbors. The resulting 
graph may not necessarily be embeddable in three dimensions, but violations will be local. 
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change in a neighbor's color is perceived after a delay of CL (communication latency) time units. 
All nodes share a global probability value AL (activation level), which determines each node’s 
probability to activate its local reasoning mechanism. If activated, a node re-evaluates its color 
assignment based on the local Degree of Conflict (DoC, the number of neighbors that share the 
node’s color divided by the overall number of neighbors K). The node calculates DoC for each of 
the G possible colors, using the perceived color of its neighbors and compares the resulting DoC 
values with the DoC of its current color. Any color whose DoC fulfills a movement direction 
constraint (determined by the algorithm used), is placed into a set of available colors. The new 
color of the node is selected from this set of available colors based on a color selection rule. 
There are three movement direction constraints and three color selection rules that can be com-
bined to form 9 unique algorithms as described in Table 13. 

At the central configuration, activation level AL = 33%, probability of node failure RP = 0% and 
communication latency CL = 1 cycle. The central configuration comprises 44 nodes (N) with 30 

Table 13: Color Change Algorithms 
  First Decision: Movement Direction (MD) 
  Any Lateral and Up Only Up 

Ra
nd

om
 

• any color may be se-
lected 

• each color has equal 
probability (P[Ci]=1/G) to 
be selected 

Random walk through 
color space independent of 
any other node 

• any color may be selected 
• each color has equal probabil-

ity (P[Ci]=1/G) to be selected 
Random walk through color 
space independent of any other 
node 

• only colors with smaller DoC 
than the current DoC may be 
selected 

• each color has equal probabil-
ity (P[Ci]=1/G) to be selected 

Strict (no lateral drift) random 
hill-climbing algorithm on the lo-
cal DoC  

Ro
ul

et
te

 

• any color may be se-
lected 

• the probability of an 
available color to be se-
lected is inverse propor-
tional to its DoC 

Unconstrained probabilistic 
hill-climbing algorithm on 
the local DoC  

• any color with equal or smaller 
DoC than the current DoC may 
be selected 

• the probability of an available 
color to be selected is inverse 
proportional to its DoC  

Relaxed (with lateral drift) prob-
abilistic hill-climbing algorithm 
on the local DoC  

• only colors with smaller DoC 
than the current DoC may be 
selected 

• the probability of an available 
color to be selected is inverse 
proportional to its DoC  

Strict (no lateral drift) probabilis-
tic hill-climbing algorithm on the 
local DoC  

Se
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Be
st

 

• any color may be se-
lected 

• the avaliable color with 
the smallest DoC is se-
lected 

Unconstrained determinis-
tic hill-climbing algorithm 
on the local DoC  

• any color with equal or smaller 
DoC than the current DoC may 
be selected 

• the avaliable color with the 
smallest DoC is selected 

Relaxed (with lateral drift) de-
terministic hill-climbing algorithm 
on the local DoC  

• only colors with smaller DoC 
than the current DoC may be 
selected 

• the avaliable color with the 
smallest DoC is selected 

Strict (no lateral drift) determi-
nistic hill-climbing algorithm on 
the local DoC  
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neighbors each (K) 
and 8 possible col-
ors (G). The nodes 
consider any color 
(MD = Any) but 
select randomly 
among only those 
that give the lowest 
local degree of 
conflict (CS = 
Best). We execute 
100 replicas of any chosen configuration (with different random seeds) and we collect the report 
data between system cycle 9,500 and 10,000 (samples of each node's activation choice).  

Table 14 identifies key points of correspondence between the ColorRAG and the MiniRAG. 

Table 15 lists the model parameters of the central configuration. We explore the parameter space 
around this configuration. 

5.2.2 Metrics 
We studied four metrics: Global Degree of Conflict (DOC), Option Set Entropy (OSE), False In-
formation Percentage (FIP), and Time to Solution (TTS) (this last only in studying deadline be-
havior). In each case we plot the mean over the reported cycles.  

Global Degree of Conflict (DOC).—The number of edges in the graph that connect two nodes 
with the same 
color divided by 
the overall 
number of 
edges. The met-
ric directly 
measures the 
global perform-
ance of the sys-
tem, since a 
DoC of zero in-
dicates a per-
fectly colored 
graph. We usu-
ally plot the 
metric multi-
plied with the 
number of 
available colors, 
since then a 
value of one 
matches the ex-
pected outcome 

Table 14: Correspondences between Mini-RAG and ColorRAG 
Characteristic Mini-RAG ColorRAG 

Number of entities that need 
to obtain a resource 

N consumers need 
access to a supplier 

K nodes need access to 
a locally distinct color 

Number of options from 
which a consumer chooses 

G suppliers G colors 

Decision strategy S, m MD, CS 
Capacity of suppliers C; overload if N > C Overload if K > G 
 

Table 15: Central Configuration 
Model Parameter Value(s) Description 

Activation Level (AL)  33%  probability of a node to be activated in a cy-
cle  

Reset Probability 
(RP)  0%  probability of a node to fail (randomly select 

color) in a cycle  
Communication La-
tency (CL)  1  number of cycles before a color change be-

comes visible to neighbors  
Population Size (N)  44  number of nodes in the graph  
Neighborhood (K)  30  number of edges leaving each node  
Color Set (G)  8  number of colors available to a node  
Graph Construction 
(GC)  

Minimum 
Neighbors 

algorithm connecting nodes  

Movement Direction 
(MD)  Any  restriction on the change in local Degree of 

Conflict metric  

Color Selection (CS)  Best  method to select next color in permitted 
movement direction  

replicas  100  repetitions (vary rnd seed) of the execution 
of a model configuration  

reporting cycles  9500-10000  cycles in which reporting data is collected  
 



   

  43

of perfectly random choices by all agents.  

Option Set Entropy (OSE).—For each node, the option set entropy is the entropy over the 
probability that a particular color is chosen in a cycle, normalized by the maximum entropy that 
is given in the random choice among all G colors. For the particular decision mechanism selected 
in this set of experiments (MD=Any, CS=Best), all colors that do not result in the lowest local 
degree of conflict in a cycle, the selection probability is zero. All remaining colors share the 
same non-zero probability, which add up to one. The maximum entropy is given as ln(G). The 
metric reflects the level of guidance that each node has in its local decision process, since an 
OSE of zero indicates that there is only one option available, while an OSE of one occurs with a 
random choice across all colors.  

False Information Percentage (FIP).—For each node, the false information percentage is the 
portion of neighbors, for which the current color assumed in the node's decision process is not 
the actual color of the node. This difference reflects the impact of the communication latency in 
the model, since a change in a neighbor's color requires some time (here always one cycle) to be-
come known to a node. The metric reflects the impact of the physical reality of restricted infor-
mation exchange on the decision processes of the nodes. In the case that FIP is zero, a node has 
perfect knowledge of the state of the environment, while a value of one indicates that all input to 
the local optimization function is misleading.  

Time to Solution (TTS).—Experiments on temporal aspects of problem solution (e.g., deadline 
performance) require an additional temporal metric that estimates how long it takes the system to 
asymptote to a solution. An experiment explores a set of configurations (e.g., N vs. AL). We 
execute multiple runs (e.g., 64) at each configuration, and run each configuration long enough to 
asymptote safely, capturing the time series of metrics (e.g., DOC) for each run. Then we con-
struct the Mean Time Series (MTS) over the runs for each configuration, compute the Delta be-
tween the first point in each MTS and the Stable Point (the mean over the last 50 points), and de-
fine the Threshold as 2% of the maximum Delta over all configurations. In the MTS for each 
configuration, we measure the distance of each point from the Stable Point, and declare that the 
solution has been reached if this distance is less than the Threshold. 

5.2.3 Phase Transitions 
We performed a set of experiments in which we observed the occurrence of a phase shift (with 
overlap region) in the ColorRAG model. We observed the phase shift varying several parameters 
around a central configuration while collecting data 
on three metrics.  

To show the phase change in the dynamics of the 
system we vary four parameters independently 
around the central configuration as shown in Table 
16 and plot our three metrics for each individual rep-
lica:  

In the following, we discuss the observed changes in 
the system dynamics as we vary these parameters.  

Table 16: Parameter Sweeps for 
Studying Phase Transitions 

Parameter First 
Value 

Last 
Value 

Step 
Length 

AL 25% 45% 0.5%
N 32 72 1
K 25 35 1
G 2 31 1
cycles 0-0.5k 9.5k-10k 0.5k
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AL = [ 25% , 45% ] by 0.5%  

DoC  OSE  FIP  
 

 

  

Low AL (<30%) produces a tight 
band of well performing systems 
(DOC * G approx. 0.25). Medium 
AL levels (30% - 38%) corre-
spond to an overlap region, 
where we still see some systems 
reaching the well performing re-
gion, while (as we increase AL) 
more and more systems show 
much worse performance in a 
wide scatter around the perform-
ance expected from a random 
system. Above an activation level 
of approximately 40% nearly no 
well performing systems are ob-
served.  

In well performing systems, 
which are associated with low 
activation levels, individual 
nodes get good guidance for 
their color selection. Given the 
chosen local decision process 
(MD=Any, CS=Best), we can in-
fer that there are only a few col-
ors for any node to choose from. 
In fact, we observe a number of 
systems that reach an OSE of 
0.0 - an indication that no node 
can choose any color but the 
one that it already carries (one 
option). In other well performing 
systems there can be only a few 
nodes left that still could change 
their color. 
As we move to higher AL, there 
is a dramatic change in the dy-
namics of the system. More and 
more systems fall into the phase, 
where the average node has 
multiple colors to choose from 
randomly (all would result in the 
lowest local DOC).  

Lower AL automatically reduces 
the false information percentage 
since the probability of using out-
dated information reduces as the 
nodes activate less often. Also, a 
system in which the nodes 
change their color less often 
should produce lower FIP values. 
This FIP plot shows the combina-
tion of these two affects as sys-
tems with lower AL values are 
already settled into their colors 
and thus a speedy information 
exchange is less critical.  
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N = [ 32 , 72 ] by 1  

DoC  OSE  FIP  

 

Increasing N while keeping K 
fixed reduces the connectedness 
of the overall system (increase in 
path length). Systems with few 
nodes (<40) show a wide range 
of bad performance. Almost com-
pletely interconnected systems (N 
near K) perform worse than ran-
dom - an indicator for thrashing. 
Between 40 and 46 nodes, the 
opportunity for significantly im-
proved performance arises as a 
tight band of good solution is es-
tablished. This band eventually 
dominates the system dynamics 
and above 47 nodes, no results 
outside the DOC*G=0.2 band are 
observed.  

As with the experiments that var-
ied the nodes' activation level, the 
change to well performing sys-
tems is reflected in the drastic re-
duction in the option set entropy 
of the average node in the sys-
tem, with some systems com-
pletely settled into a local mini-
mum (OSE=0).  

While the changes in the false 
information percentage metric in 
the case of varying activation lev-
els were driven by two processes, 
in the varying-N experiments only 
the effect of the system settling 
into a good configuration is re-
flected in this plot. As the nodes 
have few options to choose from, 
color changes become less likely 
and thus the impact of the com-
munication latency on the deci-
sion processes is reduced.  
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K = [ 25 , 35 ] by 1  

DoC  OSE  FIP  

 

Increasing K has the same effect 
as decreasing N; it reduces the 
characteristic path length of the 
system and thus increases the 
global connectedness. Thus, just 
as in the varying-N experiments, 
the performance of the system 
decreases with decreasing path 
length (increasing K).  

K > 31 prevents the system from 
reaching a (mostly) stable point 
and thus nodes remain able to 
choose randomly among multiple 
colors.  

The transition from stabilized sys-
tems (K<27) to unstable systems 
(K>31) results in increased color 
changes with the resulting in-
creased probability of false infor-
mation used in local decisions in-
duced by the communication la-
tency.  
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G = [ 2 , 31 ] by 1  

DoC  OSE  FIP  

 

A change in G should directly in-
fluence the system's ability to re-
duce conflicts between neighbor-
ing nodes. And in fact, as we in-
crease G from 2 to about 12 col-
ors, we see a tight band of in-
creasingly well performing sys-
tems, which eventually reaches 
perfectly colored graphs 
(DOC=0). 
Remarkably, in this range (2 <= G 
<= 12) other systems show a 
wide spread of significantly worse 
performance, even though their 
overall performance also in-
creases with increasing G. 
For G > 12, the dynamics of the 
system changes dramatically. 
Suddenly, not only the band of 
well performing systems van-
ishes, but also the degree of con-
flict of the not so well performing 
systems increases visibly. For 
much larger G, a wide band of 
results stabilizes that extends 
more below than above the ex-
pected performance of random 
systems (DOC*G=1).  

OSE highlights the observed 
phase change. The band of well 
performing systems at lower val-
ues of G generally corresponds to 
systems that have already settled 
down at configurations that do not 
allow the nodes to choose among 
multiple colors. The not so well 
performing systems above this 
tight band are still unsettled, but, 
as we increase G, their OSE only 
grows moderately. 
After the change of phase at 
G=12, the rate of OSE increase 
with G is much higher taking the 
dynamics quickly towards highly 
random choices across the full 
color spectrum. There the nodes 
have only few guidance in their 
decision since the set of colors 
that promise the lowest local de-
gree of conflict dramatically in-
creases in size.  

Again the changes in the FIP 
metric are influenced by two fac-
tors. Dominating the plot is the 
difference between settled sys-
tems (lower band) and systems 
with high rates of color change 
(upper band). But, especially 
shaping the upper band is the 
fact that lower values of G reduce 
a node's options for change and 
thus reduce the induced errors in 
other nodes' decision input. With 
large numbers of colors available 
to choose (see high OSE values), 
the probability for an actual color 
change increases and thus the 
impact of the communication la-
tency increases (driving up FIP).  
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The overall story emerging from this analysis is that phase shifts are ubiquitous in the Color-
RAG.  

5.2.4 Dynamic Attractors 
Sometimes a dynamical system will exhibit different forms of behavior over time, as the system 
wanders into the basin of attraction of different dynamical attractors. An example of this for the 
Color RAG happens in the system where GC = 2D nearest neighbor, CL = 1, N = 600, K = 150, 
G = 4. Figure 32 shows the dependency on AL. The dashed line marks a phase transition such as 
those discussed in Section 5.2.3. For even higher AL, between 0.4 and 0.7, individual experi-
mental instances fall into one of two bands.  

Further observation shows that these bands represent regions of attraction, that every experiment 
begins in the upper band, and then falls into the lower band if one waits long enough. Qualita-
tively, the system’s behavior in these two bands is quite different. Systems in the upper band 
color subregions of the graph the same, but differ from region to region (Figure 33a), and the 
coloring changes drastically from one cycle to the next. Once the system transitions to the lower 
band, the various colors are distributed more evenly over the whole graph (Figure 33b). A small 
subset of nodes lock onto one color that gives them a low DOC (the small dark blue nodes in 
Figure 33b), while the other nodes cycle through the other colors, one or two at a time.  
The time required for an instance to transition from the upper to the lower band varies widely. 
Some instances make the transition in 200 cycles; others take longer than 2000 cycles. Under-
standing whether a given system will transition quickly or slowly is clearly an important subject 

Mean over cycles = [ 0-0.5k , 9.5k-10k ] by 0.5k  

DoC  OSE  FIP  

 

These plots sample our three metrics at different times in the life of the system. Previous experiments 
show that the systems generally settle on their respective dynamics (fixed patterns, drifting, thrashing, ...) 
within approximately 500 cycles. Our other experiments in this series, in which we vary model parame-
ters, all collect data between cycle 9500 and 10000 to ensure representative results. 
As we can see in the time-varying plots, the system dynamics are really established early on and do not 
change significantly. We expect that larger systems (many more nodes) take longer to find their respec-
tive dynamics. Also, with the potential of inhomogeneities in the graph structure, sub-regions with different 
stable dynamics could be established.  
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for ongoing research. The set of stable, low-DOC 
nodes that emerges in the lower band could be 
critical for achieving reliable system performance, 
and being able to predict how long a particular sys-
tem instance will take to reach this attractor is es-
sential in deploying operational systems. We hy-
pothesize that the difference is related to the de-
tailed structure of the graph, which is instantiated 
randomly for each experiment. Testing this hy-
pothesis requires further research. 

5.2.5 Parallel with MG 
The investigations of the ColorRAG described up 
to this point focus on the three non-temporal met-
rics DOC, OSE, and FIP. When we explore the 
variation of TTS (Time To Solution) over the pa-
rameter space, further interesting structure emerges 
that shows a high-level correspondence with the 
dynamics of MG. Figure 34 shows the TTS land-
scape as a function of AL and G. 

Consider first the dependency of TTS on AL. 
Figure 34 shows several basic features as AL in-
creases. Colored dots superimposed on the TTS 
surface show the G*DOC, which is 1 under ran-
dom choice, < 1 for DOC better than random, and 
> 1 for DOC worse than random. 

• For very low AL, TTS is very high, since the system can take only very small steps toward 
solution. However, in a stable environment (RP = 0, as here), eventually the system reaches a 
good solution. 

• Up to a point, TTS de-
creases with increasing 
AL, as the system takes 
larger steps toward the 
solution. 

• The red line indicates 
the location of a phase 
shift. At this point TTS 
is increasing with AL, 
indicating the onset of 
thrashing behavior, as 
discussed in the previous 
section. 

• This thrashing leads to a 
peak in TTS, which then 

DOC

FIP

OSE

DOC

FIP

OSE

 

Figure 32: Phase Shift and Attractors 

a. Upper Band b. Lower Banda. Upper Band b. Lower Band  

Figure 33: Coloring Patterns in Different Attractors.—Node 
size is proportional to DOC. 
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drops to low solution 
times with poor results.  

If AL is too slow, nodes can-
not keep up with dynamic 
changes. But if AL is too fast 
with respect to CL, nodes 
make decisions with obsolete 
information and thrash. Very 
high AL produces essentially 
random behavior. This ob-
servation is critical in the 
light of contemporary ten-
dencies to reducing the cycle 
time in information systems 
(essentially, increasing AL). 
Such increases are useful 
only up to a point, beyond 
which they introduce insta-
bility. Our result here is 
comparable to the behavior 
observed in [13] in a related 
domain. 

Now consider the dependence on G. Where G is low, there is no potential for solution, and ran-
dom works fine (yielding poor results). This region is on the far side of Figure 34. Medium G re-
quires effort to find a good solution. For high G, random again works as well as anything else, 
this time yielding trivially good solutions. 
Thus throughout most of the parameter space, the system quickly converges, either to very poor 
values (high AL) or to good ones in an underconstrained system (high G). The interesting region 
is in the corner with low G and low AL. The variation in this region is a saddle point, character-
ized by 02
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Figure 34: Time To Solution as function of Activation Level 
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Figure 35: Comparison of ColorRAG and MG 
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systems. 

Comparison of Figure 34 and Figure 2 shows a striking correspondence (Figure 35) that is an ex-
ample of our Generality Hypothesis. 

• In the A regions of both systems, agents have few choices. Their interactions lead to system-
atically wrong information and bad solutions. 

• In the B regions, agents have a manageable number of choices, and the right information is 
available to enable them to select good solutions among them. 

• In the C regions, agents face a surfeit of information and more choices than they can manage, 
and solutions are neither as bad as in region A nor as good as in region B. 

5.2.6 Control Mechanisms 
Figure 34 suggests that an effective means of control is adjusting AL. Performance is worst in 
the high AL region, so our basic control mechanism will be to reduce AL. Even when AL says 
that a node should evaluate its color assignment, it will not evaluate with probability NAP (No-
Action Probability). This probability is set using a variety of the pheromone learning we applied 
in the Adaptive Mini-RAG (Section 3.3). We have explored two influences on the size of the de-
posit. 

1. The deposit might increase with FIP, since FIP is diagnostic of system thrashing.  

2. The deposit might decrease as OSE increases, since OSE indicates system convergence. 

Figure 36 shows the impact of these mechanisms on both quality of solution (G*DOC) and TTS. 
Both mechanisms increase TTS (lower row of plots), since the NAP effectively reduces AL and 

FIP Learning OSE Learning FIP and OSE LearningFIP Learning OSE Learning FIP and OSE Learning  

Figure 36: Control Mechanisms.—The upper row of figures shows the improvement in 
G*DOC (higher is better) under each control mechanism. The lower row shows the 
change in TTS (lower is better). 
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thus the system require more cycles to con-
verge. OSE learning provides greater increase in 
solution quality than does FIP learning, but 
greatly increases TTS in the high-AL and high-
G regime. Combining the two mechanisms 
(right-hand plots) yields an increase in quality 
as good as that achieved with OSE alone, but 
restricts the increase in TTS to the region where 
the increase in quality is actually achieved. 

To make our control sensitive to deadline con-
straints, we focus on the two-step nature of the 
color choice algorithm (Table 13): first select a 
movement direction, then invoke a color selec-
tion rule. The color selection rule has available 
only the set of colors identified in the move-
ment direction step. 

Most of our ColorRAG experiments use MD = 
Any (allow a node to choose any of the avail-
able colors, even those that would increase 
DOC) and CS = Best (pick randomly among the 
colors that would yield the lowest DOC). We 
apply deadline control by modifying the MD 
decision. With Only-Up Probability OUP = 
(ea*t/deadline – 1)/(ea – 1), where a is a tuning 
constant, we apply MD = OnlyUp instead of 
MD = Any. The difference between the two is 
subtle but important. MD = Any with CS = Best 
means that if there are other colors that would 
yield the same DOC as the current color, the 
node can select them, and thus move laterally in 
search space, exploring new configurations. MD = OnlyUp means that the set of colors on which 
CS operates includes the node’s current color and any colors that would yield a lower DOC, but 
no colors that would yield the same DOC as the current color. Thus the more frequently a node 
chooses MD = OnlyUp, the more rigorously it hill-climbs, exploiting the gradient it sees. 

Figure 37 shows the result of this mechanism applied to a system with deadline = 1000. The two 
top plots show the evolution of DOC and OUP as the system runs. Without control, OUP re-
mains at 0 and DOC quickly stabilizes around 0.39. With control, as OUP grows, DOC drops. 
The bottom plot shows that different runs with deadline control cluster around the level of the 
best DOC achievable with perfect knowledge, while uncontrolled results have much higher 
DOC. 

Another way to look at Figure 37 is to observe that the behavior seen in the upper plot would 
also result if we had no deadline at all. That is, the use of OUP control does not just enable us to 
cope with a deadline. It actually improves the behavior of the system over the case where there is 
no deadline, by forcing the system to shift from exploration to exploitation and thus to zero in on 
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Figure 37: Deadline Control in the Color-
RAG.—Application of deadline control al-
lows the system to reach a degree of conflict 
as low as the best results achieved with per-
fect knowledge (CL = 0). 
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a desirable solution. It thus plays a role analogous to that of temperature in simulated annealing 
[16]. 

6 Technical Leave-Behinds 
AORIST has produced a number of technical insights and tools that will be valuable in future re-
search and deployment efforts. 

6.1 Technical Insights 
AORIST has demonstrated several key technical insights concerning the dynamics of distributed 
resource allocation systems. 

Resource allocation systems are rife with phase shifts.—Everywhere we turn, we find discon-
tinuities in key system parameters. This experience reinforces the key assumption of the com-
plexity and dynamics component of the ANT program that responsible system engineering de-
mands attention to these behaviors. Specific examples we have encountered include the follow-
ing: 

• The original MG phase transition with increasing size of the strategy space persists in gener-
alizations of the game. 

• A complex phase shift occurs in a number of measures (including system utility and variance 
of supplier load) as the ratio of overall load to capacity varies. The shift includes coexistence 
regions close to but on either side of the MG configuration N = C + 1. 

• The same load vs. capacity landscape shows several other qualitatively distinct regions. We 
have not had the resources to explore possible phase shifts at the boundaries of these regions. 

• Every parameter of the distributed graph coloring problem we have explored can initiate 
phase shifts.  

• The two-attractor structure of the Color RAG shows an important time-dependent dynamics 
with very different time constants depending on details of system initialization. 

Effort profiles are algorithm-dependent.—The received wisdom in the research community 
dealing with constraint satisfaction and constraint relaxation is that the computational effort ex-
pended as problem size increases follows an easy-hard-easy profile for constraint satisfaction 
problems, but an easy-hard profile for constraint optimization problems. We have found [24] that 
this summary is overly simplistic. In particular, the Mini-RAG is a constraint optimization sys-
tem exhibiting an easy-hard-easy profile. Exploration of other ANT systems, including CAM-
ERA, Marbles, and the University of Kansas system, shows that in realistic systems, the effort 
profile depends more on the algorithm being used than on whether the system is doing constraint 
satisfaction or constraint optimization, and possible profiles include hard-easy as well as easy-
hard and easy-hard-easy. 

Pheromone learning as a control mechanism.—We have demonstrate the utility of a control 
mechanism inspired by insect pheromones in a wide range of applications (Sections 3.3, 4.3.5, 
5.2.5). The basic pattern is that some action of an agent is determined probabilistically, by com-
paring a random number with a threshold. The threshold is maintained by deposit and evapora-
tion. When the agent encounters some circumstance that would indicate it should reduce its fre-
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quency of activation, it makes a deposit 
on the threshold, increasing its value and 
thus increasing the likelihood that the 
next random number will be less than the 
threshold. Over time, the threshold 
evaporates by a constant fraction at each 
time step, thus discarding obsolete in-
formation. This mechanism is particu-
larly useful in addressing temporal de-
pendencies in resource allocation. In ad-
dition to deposit and evaporation, insect 
pheromones exhibit a third mechanism, 
propagation between neighboring loca-
tions. When agents are “near” one an-
other in some topology (e.g., geographi-
cal space; resource space), the phero-
mone learning mechanism could be ex-
tended to include propagation. In this ex-
tension (not explored in the current pro-
ject), an agent would propagate some proportion of its own no-action probability to nearby 
agents. 

Explore vs. exploit near deadlines.—Our deadline-management mechanisms for Marbles and 
the Color RAG draw on a common theme that is likely to be useful in other settings as well. Re-
source allocation schemes in uncertain environments must include mechanisms for both explor-
ing the space of possible allocations and exploiting assignments that appear more promising. The 
relative importance of exploration and exploitation is not constant 

6.2 Tools 
AORIST uses simulation for two purposes: finding regions of parameter space in which a system 
exhibits nontrivial behavior, and studying those regions in detail. The suite of software tools that 
we have developed for these tasks will be useful in studying the dynamics of other systems as 
well. 

Finding interesting regions.—Finding interesting regions of parameter space requires multiple 
instantiations of a simulation [2]. The traditional approach to searching such a space is a prede-
fined search, based on an experimental design. Factorial designs that exhaustively sweep the 
relevant ranges (for example, using a tool such as Drone [3]) quickly become computationally 
prohibitive, while designs such as Latin Squares that combine the exploration of different factors 
in a single run are blind to interaction effects.  

To overcome these challenges, we developed the Adaptive Parameter Simulation Environment 
(APSE). APSE uses a derivative of Particle Swarm Optimization (PSO) [15] to search automati-
cally through the parameter space, based on a fitness function over samples in parameter space 
that formalizes our specific interest (e.g., indication of phase change). Determining the fitness of 
any point in parameter space is very costly since it requires the repeated execution of our simula-
tion model. APSE automatically balances the effort invested in assessing the fitness of a particu-
lar configuration with the expected reward (high fitness) by intelligently choosing the most at-

 
Figure 38: Result of APSE run.—The large points 
clustered around the dotted line represent parameter 
configurations of interest. A complete sweep of the 
parameter space would have required 121810 simu-
lation runs. APSE found the critical region with only 
20046 runs, a savings of more than 6x. 
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tractive configurations for further simulation runs. Figure 38 shows how APSE is able to reduce 
the search space significantly as it seeks for a phase change in the distributed graph-coloring 
model in the ANT program. Other potential fitness functions may describe system performance 
boundaries whose location in a particular model would then be discovered in a PSO exploration. 

Antecedents to APSE include exploratory modeling at RAND [1], the EvCA (Evolving Cellular 
Automata) group at the Santa Fe Institute [10] and Miller at CMU [20]. 

• The RAND work outlines the potential for the sort of exploration we are conducting, but 
does not solve the critical problem of developing fitness functions that capture dynamic phe-
nomena of interest. 

• Miller uses evolution over parameter spaces to verify models in the social sciences, seeking 
parameter values that break a model. In contrast, APSE searches the parameter space against 
two criteria: 1) What are the bounds on performance that a given approach can achieve? 2) 
Where might there be interesting discontinuities in behavior (e.g., phase transitions) that re-
quire further study?  

• The EvCA group’s use of evolution is closer to APSE. They evolve update rules for one-
dimensional cellular automata to find rules that will let the automaton compute a given func-
tion of its initial state (e.g., setting all cells equal to the state of the majority of the initial 
cells). APSE searches for a much more complex structure. 

The key to adaptive search is 
defining an appropriate fitness 
function against which to evalu-
ate successive results. This re-
quirement is not onerous if we 
are searching for performance 
bounds, since we simply use 
adaptive search to drive the per-
formance as high (or low) as it 
can, and examine the slope of 
the performance landscape to 
detect leveling-off. In searching 
for discontinuities, the appropri-
ate fitness function can be much 
more elusive. Such discontinui-
ties are traditionally recognized 
by visual inspection of plots of 
experimental results. Our ex-
periments in the ANT program 
show the promise of using the 
entropy of the normalized dis-
tance between sample points. 

Studying regions in detail.—
Once we identify the general re-
gion of interest we study its 
structure using AISLE (Auto-
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Figure 39: AISLE Framework.—Researchers (A) instanti-
ate templates (B) to guide simulation (C), analysis (D), and 
result presentation (E), generating standardized HTML re-
ports that are integrated with other research documents in an 
integrated online experimental notebook. Reports include 
links to the templates (B), ensuring repeatability. The simula-
tions can bedistributed over different processors in a proces-
sor farm. 
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mated Instance Sweep for 
Local Exploration, Figure 
39), an experimental 
framework that enables us 
to configure automatic 
sweeps of parameter spaces 
and collect detailed data 
that feeds subsequent 
mathematical analysis. In 
contrast with APSE, 
AISLE executes a prede-
termined number of repli-
cas (varying random seed) 
of each specified configu-
ration and gathers reports 
generated by a wide variety 
of metrics. We use Mathe-
matica as well as special-
purpose Java programs to 
analyze and visualize the structure of the change of the model’s dynamics across the chosen re-
gion of the parameter space. 

7 Transition Efforts 
Altarum is vigorously pursuing transition of the AORIST technology in two main military appli-
cations: upgrading of the Army’s Bradley fighting vehicle, and engineering supply networks for 
two DoD-sponsored programs. Both domains involve complex resource allocation problems with 
potentially pathological dynamics, and we are applying our AORIST tools and insights to them. 

7.1 Bradley Upgrade 
The Bradley fighting vehicle is the work-
horse armored personnel carrier for the US 
Army. No new Bradleys are being manufac-
tured, so the total population is fixed (at 
6710, in varying degrees of readiness). As 
improved subsystems (e.g., weapons, sen-
sors, communications, powertrain) become 
available, previous editions are remanufac-
tured. Figure 40 summarizes the five main 
versions of the Bradley and the conversion 
paths among them. 

All five versions of the Bradley are currently 
deployed to operational units. For training 
and maintenance reasons, all of the Bradleys 
in a single battalion must be of the same ver-
sion. Thus battalions are upgraded all at 

 

Figure 40: Migration Paths among Versions of the Bradley 
Fighting Vehicle 
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Figure 41: Conflicting Demands in Managing 
the Bradley 
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once, and a battalion is not deployable for the period of 30-60 days required to swap out an old 
version, swap in a new one, and train the troops on the new technology. Older Bradleys flow out 
of a battalion being upgraded, to battalions that are being relieved of still older models or to a 
remanufacturing facility, while remanufactured Bradleys flow in to take their place. This fielding 
plan must satisfy not only the mission objective of maximizing battalion readiness, but also ca-
pacity constraints on remanufacturing facilities, transportation resources, and the holding areas 
used to accumulate the set of Bradleys needed to replenish a battalion, and the total budget dol-
lars available. These dollars are in two separate accounts that cannot be combined: acquisition 
(for the upgrades) and operations and maintenance (for training and deployment).  

Thus development and execution of the fielding plan is a complex negotiation involving many 
players: multiple battalions, manufacturers, transportation vendors, and the Pentagon. To make 
matters worse, the Pentagon does not speak with a single voice. Figure 41 illustrates how both 
budget constraints and doctrinal priorities impact the system, in ways that are seldom coordi-
nated or consistent.  

The Bradley community is rife with war stories about the intractability of managing this system. 
The simple issue of maintaining a count of the number of each version of the Bradley currently 
deployed to each battalion is so challenging that the integrated spreadsheet that records this in-
formation is known as the “never-right chart.”  

Altarum is the sole-source supporting the Army’s Bradley program office with modeling and 
simulation for warfighting analysis. In this capacity, we are intimately acquainted with the com-
plexities of the fielding plan, and are often called upon to help assess the potential impact on de-
fense readiness of adjustments to that plan. To support our customer, we are developing (at our 
own initiative and expense, but with the endorsement and guidance of PM Bradley) an interac-
tive analysis tool that will model the various constraints in the upgrade process and reduce the 
time needed to assess the impact of a change from four hours to ten minutes. This tool will be-
come the platform for a variety of extensions and capabilities based on AORIST.  

• Our understanding of how computational effort varies as a function of load and capacity (N x 
C landscapes in the Mini-RAG) will enable us to determine when the system is near its “ef-
fective capacity,” and balance leanness against the need for agility. 

• Insights from our work on the impact of AL on TTS in the Color RAG suggests the dangers 
inherent in seeking to update information too rapidly in comparison with the inherent com-
munications latency in the system. These dynamics are likely at least partly responsible for 
errors in the “never-right chart,” and understanding them in more detail will yield an im-
proved fielding plan. 

• The dynamic metrics we have developed (e.g., contention, VPR, entropy measures) will en-
able us to project the dynamic impact of alternative fielding plans with less need for time-
consuming simulations of production and shipping. 

• Where simulation is necessary, APSE and AISLE will enable us to survey the space of op-
tions quickly, identifying “danger zones” to avoid. 

7.2 Supply Network Engineering 
Altarum (and its predecessor organizations ERIM and the Center for Electronic Commerce from 
ITI) has an active practice with industrial and government customers in engineering supply net-
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works, with particular emphasis on managing their dynamical behavior. Major channels for tech-
nology transition from AORIST are through two DoD funded consortia in which we are active: 
ONR’s Supply-chain Practices for Affordable Naval Systems (SPANS), and DLA’s Defense 
Sustainment Consortium (DSC). Altarum is leading technical projects under both programs that 
will draw on tools and techniques from AORIST. The SPANS Supply Chain Dynamics project 
focuses on supply chains supporting NorthrupGrumman Newport News, the main shipyard sup-
porting our nuclear carrier fleet. DSC’s Robust Lean Supply Chain project will focus on manu-
facturing systems at Raytheon. 

• The dependence of computational effort on load and capacity is again a central issue in de-
termining effective capacity and balancing leanness against the need for agility. These mod-
els are critical in building business cases for capacity that would be reckoned “excess capac-
ity” under traditional cost-accounting models, but that are actually necessary for dynamic 
stability. 

• The impact of AL on TTS in the Color RAG is directly relevant to assessing optimal timing 
of releases in a supply chain (shipment authorizations sent from customers to their suppliers). 
In addition, it is likely that the dynamics of convergence depends sensitively on the topology 
of the supply network, and our methods may be critical in assessing the right degree of fan-
out, the impact of lower-tier suppliers serving multiple mid-tier companies that converge 
again at the first tier, and related structural design issues. 

• Our dynamic metrics will be critical for providing decision support for rough-cut capacity 
planning. 

• APSE and AISLE can help identify “tight spots” that require more attention (e.g., improved 
processes, back-up stores, restructuring). In fact, AISLE is already being used in the SPANS 
project. 

7.3 Collaboration with ISI/CAMERA 
Our collaboration with the ISI team responsible for CAMERA/SNAP/Marbles has been particu-
larly fruitful, and our mechanisms seem to offer significant improvements in the performance 
and efficiency of their tools. We are actively pursuing teaming opportunities where we can sup-
port them in deployment activities. 

Acronyms 
AL Activation Level 
ANT Autonomous Negotiating Teams 
AORIST Agents Overcoming Resource-Independent Scaling Threats 
APSE Adaptive Parameter Search Environment 
ATTEND Automated Tools To Evaluate Negotiation Difficulty 
CAg Consumer Agent 
CAMERA Coordination and Management Environments for Responsive Agents 
CBRNM Case-Based Reflective Negotiation Model 
CL Communication latency 
CS Color Selection 
DARPA Defense Advanced Research Projects Agency 
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DASCh Dynamic Analysis of Supply Chains 
DLA Defense Logistics Agency 
DoC Degree of Conflict: proportion of neighboring nodes with same color  
DOC Global Degree of Conflict 
DoD Department of Defense 
DSC Defense Sustainment Consortium 
ECM Electronic Counter-Measures 
ERIM Environmental Research Institute of Michigan 
EvCA Evolving Cellular Automata 
FIP False Information Percentage 
G Number of suppliers (colors in a colored graph) 
ISI Information Sciences Institute 
ITI Industrial Technology Institute 
IXO Information eXploitation Office 
K (Mean) number of neighbors in a graph 
K-SAT A Boolean constraint satisfaction problem with K variables per clause. 
m Length of history used for decisions by consumers 
MCP Myopic Cost-based Probability 
MD Movement Direction 
MG Minority Game 
MICANT Model Integrated Computing and Autonomous Negotiating Teams 
MTS Mean Time Series 
MVP Myopic Value-based Probability 
N Number of consumers (or nodes in a colored graph) 
NBE No-Bid Evaporation 
NBP No-Bid Probability 
ONR Office of Naval Research 
OSE Option Set Entropy 
RAG Resource Allocation Game 
RIST Resource Independent Scaling Threat 
RP Reset probability (models node failure) 
S Number of strategies per consumer 
SAg Supplier Agent 
SNAP Schedules Negotiated by Agent Planners 
SPANS Supply-chain Practices for Affordable Naval Systems 
TTS Time To Solution 
UK University of Kansas 
VPR Value Per Resource required 
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Appendix A: Theoretical Analysis of MICANT-RAG (Section 4.1) 
What follows is a derivation of an equation to describe a very simple version of the problem in 
which agents seek a resource to complete a task. We ignore any discretization of the problem and 
suppose that the process is continuous. This approximation, therefore, will not reproduce the os-
cillations seen in the simulations. We assume that there is only one resource necessary to the 
completion of the task, and that there is only one supplier that can supply that resource. We as-
sume that tasks are introduced into the system continuously and at a constant rate. (Generaliza-
tions to a non-constant rate are straightforward.)  

Let N be the number of open tasks. Then,  

BA
dt
dN

−= , 

where A is the number of new tasks introduced per unit time, and B is the number of tasks com-
pleted per unit time. To determine B, we consider the typical time between task completions. 
Suppose that a task is competed at time t0. We assume that a task is completed as soon as the 
single resource necessary to complete the task is successfully captured by the task. After a re-
source is captured from the supplier, there is a refractory period, R, (a restocking time), during 
which no resource is available. Following the refractory period, all open tasks can bid for the re-
source. After a task bids for a resource, there is a grace period that must elapse before that task 
can bid again. If we assume that the probability for a task to bid for a resource is uniformly dis-
tributed in time, then the typical time between bids for the resource will be c/N, where c is a con-
stant closely related to the grace period. So, if a task is completed at time t0, (i.e. if the resource 
is captured by a task at time t0, the next time a resource can be captured by a task will typically 
be t0 + R + c/N. Therefore the typical time between task completions is R + c/N, and so 

N
cR

B
+

=
1 . 

Thus, 

N
cR

A
dt
dN

+
−=

1 , 

This equation is not trivial to integrate, although it may be possible to get a closed form solution. 
Nevertheless, we can learn some general things about it. First, let’s consider the fixed point, 
dN/dt = 0. This occurs when  

AR
cANN

−
≡=

10 . 

Note that this is unphysical unless AR < 1. In fact, this is the regime studied in our simulations. 
We compute R as 1/Ar, where r ∈ {1.2, 1.5, 2, 3}. In these terms, 

1/110 −
=

−
≡

r
Arc

r
cAN  
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If N is small (or zero) when t is small, then the number of open tasks will increase with time. N 
will increase until it is large enough so that resources are requested at a fast enough rate so that 
A=B, at which point, dN/dt=0. Thus, in this continuous approximation, the number of open tasks 
increases with time and asymptotes at the value N0. This is qualitatively what we see in the simu-
lations. Plugging in values for A, R and c, we find ratios of N0 for different sets of values of pa-
rameters that are approximately correct. (Note that these ratios depend only on the values of AR 
for the different runs, not on c or on A or R, separately.)  

In addition to the fast oscillations that are observed in the simulations, and that are due to the 
batching of tasks, this equation does not explain the apparent overshoot in N for smallish times. 
That is, it appears in the simulations that, depending on the values of A, the restocking time and 
the grace period, that N rises above its asymptotic value and approaches N0 from above. This 
equation evidently does not exhibit this behavior. We believe that this overshoot is a conse-
quence of the fact that the process (and the simulation) is discrete, and should really be modeled 
as a difference equation.  
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Appendix B: Computation of entropy for the random choice game 
Here we will show that the entropy for the m-histories of states in a random choice resource allo-
cation game, Sm, satisfies Sm=mS1, where S1 is the entropy of the distribution of outcomes for a 
single time step of the same game. 

We consider N agents each of whom flips a G sided coin to determine which of G groups to join. 
We are interested in the entropy of m-strings of states. 

First, at a given time step there are a total of 2G possible states corresponding to whether each 
group is over or under loaded. For a given N, C and G not all of these will be accessible. Let P(j) 
be the probability that state j (which is one of the 2G states) occurs in a single time step. For 
those states that are not accessible, P(j)=0. 

P(j) can be computed in a straightforward way. Let nk be the number of agents in group k at a 
given time step. Then, the probability to have the set {nk} is just 

N

k
k Gn

N
⎥⎦
⎤

⎢⎣
⎡

∏
1

!
!      (1) 

and the probability to have some state, j consisting of a G-tuple of under and over loaded groups, 
eg. (+,-,-,..,+), is just 
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Where L<{nk}<U denotes the set of values of nk consistent with the particular state, j, whose 
probability is being computed. In general, there is no simple closed form for P(j). However, in 
the limit of large N and nk, the P(j) are related to (and generalizations of) the error function, 
which are just incomplete Gaussian integrals. To see that, one needs to use Stiling’s approxima-
tion: lnN!≈ N lnN –N in the expression (2) for N! and nk!. Then, the summand becomes 

⎥
⎦

⎤
⎢
⎣

⎡
−− ∑

k
kk nnGNNN lnlnlnexp .      (3) 

Since this is a random choice game, we know that the mean value of nk will be N/G. Define 
N/G=ν, and let nk = ν + rk. Then, (3) becomes 
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⎢
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k
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where ξk≡ rk/ν. 

This simplifies to  
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kk )1ln()1(exp ξξν       (5) 
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where we have used the fact that 0=∑
k

kr  and that ∑ =
k

N ννν lnln . 

Now, we expect that rk will be a number, typically of order N1/2, so that ξk will typically be of 
order N-1/2, and therefore <<1 for large N. So, we can expand (5) in a power series in ξk. We 
have 
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where the linear term sums to zero. 

So,  
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Here the limits on the integration over the ξk’s just reflect the same limits as in the sum. So, the 
P(j) are, in the limit of large N, just products and sums of error functions. In general there is no 
simple closed form for these, but they can be easily evaluated numerically. 

From the P(j) we want to calculate the entropy for the m-strings. Since we have a RCG, the his-
tory of states, j(t) are IID. Therefore, the probability of occurrence of a particular m string is just 
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Where hm is the m-string hm={j1, . . . ,jm}, and H is the probability for that m-string to occur. So, 
the entropy of the m-strings is just 
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Now, consider a set of histories for which j1,j2, . . .,jm-1 are fixed. The set includes all 2G values 
for jm. Call this set β. Then, 
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  (9). 

Summing over hm∈β means summing over all values of jm. There are two terms in (9). In the 
first one, all factors are fixed except for P(jm). When we sum over all values of jm, this factor 
sums to one, and then the first term just becomes one term that contributes to Sm-1. I.e., it is 
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which is just the contribution of the particular m-1 string {j1, . . ., jm-1} to Sm-1. When we sum 
over jm, the second term is just 
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where S1 is the entropy for the m=1 string, i.e. for one time step. 

Using (9), (10) and (11) in (8), we have 
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Note first that the sum here is now over values of hm-1 since to get (10) and (11) we summed over 
values of jm. The first term in (12) is just Sm-1 After summing over all values of hm-1, the second 
term in (12) just becomes S1, since 
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So, 

Sm=Sm-1 + S1,        (14) 

and by induction, 

Sm = mS1.        (15) 

 
 


